Macrocyclic Chelators for Aqueous Lanthanide Separations via Precipitation: Toward Sustainable Recycling of Rare-Earths from NdFeB Magnets
Status PubMed-not-MEDLINE Jazyk angličtina Země Spojené státy americké Médium print-electronic
Typ dokumentu časopisecké články
PubMed
40537887
PubMed Central
PMC12232301
DOI
10.1021/jacs.5c04150
Knihovny.cz E-zdroje
- Publikační typ
- časopisecké články MeSH
Rare-earth elements (REEs) are critical materials in modern industry, but their production has a significant environmental footprint. Environmentally friendly separation methods would enable efficient, sustainable recycling of REEs. This work introduces a class of cyclen-based macrocyclic chelators that induce significant differences in solubility for REE chelates, enabling their selective precipitation from pH-neutral aqueous solution. The process was refined using simple coordinating additives (e.g., acetate) to form ternary coordination compounds to fine-tune these chelate solubilities. Conditions were optimized for the REEs found in NdFeB magnets, allowing separations of even adjacent lanthanides by repeated precipitations. Separation factors comparable to those of industrial solvent extraction methods were achieved without organic solvents. Analysis of NdFeB magnets from current electric car motors revealed an unexpected presence of holmium as a supplement and/or replacement for terbium and dysprosium, suggesting shifting industrial trends with implications for future recycling efforts. In a case study, one such automotive magnet was processed to obtain a 99.7% pure neodymium product. Scalable, tunable, and entirely aqueous, this approach advances the sustainable use of REEs toward a circular economy.
Zobrazit více v PubMed
Cheisson T., Schelter E. J.. Rare Earth Elements: Mendeleev’s Bane, Modern Marvels. Science. 2019;363(6426):489–493. doi: 10.1126/science.aau7628. PubMed DOI
Wahsner J., Gale E. M., Rodríguez-Rodríguez A., Caravan P.. Chemistry of MRI Contrast Agents: Current Challenges and New Frontiers. Chem. Rev. 2019;119(2):957–1057. doi: 10.1021/acs.chemrev.8b00363. PubMed DOI PMC
Cotruvo J. A.. The Chemistry of Lanthanides in Biology: Recent Discoveries, Emerging Principles, and Technological Applications. ACS Cent. Sci. 2019;5(9):1496–1506. doi: 10.1021/acscentsci.9b00642. PubMed DOI PMC
Balaram V.. Rare Earth Elements: A Review of Applications, Occurrence, Exploration, Analysis, Recycling, and Environmental Impact. Geosci. Front. 2019;10(4):1285–1303. doi: 10.1016/j.gsf.2018.12.005. DOI
Binnemans K., Jones P. T., Blanpain B., Van Gerven T., Yang Y., Walton A., Buchert M.. Recycling of Rare Earths: A Critical Review. J. Clean. Prod. 2013;51:1–22. doi: 10.1016/j.jclepro.2012.12.037. DOI
Wang P., Yang Y.-Y., Heidrich O., Chen L.-Y., Chen L.-H., Fishman T., Chen W.-Q.. Regional Rare-Earth Element Supply and Demand Balanced with Circular Economy Strategies. Nat. Geosci. 2024;17(1):94–102. doi: 10.1038/s41561-023-01350-9. DOI
Kumari A., Sinha M. K., Pramanik S., Sahu S. K.. Recovery of Rare Earths from Spent NdFeB Magnets of Wind Turbine: Leaching and Kinetic Aspects. Waste Manag. 2018;75:486–498. doi: 10.1016/j.wasman.2018.01.033. PubMed DOI
Golroudbary S. R., Makarava I., Kraslawski A., Repo E.. Global Environmental Cost of Using Rare Earth Elements in Green Energy Technologies. Sci. Total Environ. 2022;832:155022. doi: 10.1016/j.scitotenv.2022.155022. PubMed DOI
Binnemans K., McGuiness P., Jones P. T.. Rare-Earth Recycling Needs Market Intervention. Nat. Rev. Mater. 2021;6(6):459–461. doi: 10.1038/s41578-021-00308-w. DOI
Yang Y., Walton A., Sheridan R., Güth K., Gauß R., Gutfleisch O., Buchert M., Steenari B.-M., Van Gerven T., Jones P. T., Binnemans K.. REE Recovery from End-of-Life NdFeB Permanent Magnet Scrap: A Critical Review. J. Sustain. Metall. 2017;3(1):122–149. doi: 10.1007/s40831-016-0090-4. DOI
Yadav J., Sarker S. K., Bruckard W., Jegatheesan V., Haque N., Singh N., Pramanik B. K.. Greening the Supply Chain: Sustainable Approaches for Rare Earth Element Recovery from Neodymium Iron Boron Magnet Waste. J. Environ. Chem. Eng. 2024;12(4):113169. doi: 10.1016/j.jece.2024.113169. DOI
Pramanik S., Kaur S., Popovs I., Ivanov A. S., Jansone-Popova S.. Emerging Rare Earth Element Separation Technologies. Eur. J. Inorg. Chem. 2024;27(25):e202400064. doi: 10.1002/ejic.202400064. DOI
Chen Z., Li Z., Chen J., Kallem P., Banat F., Qiu H.. Recent Advances in Selective Separation Technologies of Rare Earth Elements: A Review. J. Environ. Chem. Eng. 2022;10(1):107104. doi: 10.1016/j.jece.2021.107104. DOI
Xie F., Zhang T. A., Dreisinger D., Doyle F.. A Critical Review on Solvent Extraction of Rare Earths from Aqueous Solutions. Miner. Eng. 2014;56:10–28. doi: 10.1016/j.mineng.2013.10.021. DOI
Merroune A., Ait Brahim J., Berrada M., Essakhraoui M., Achiou B., Mazouz H., Beniazza R.. A Comprehensive Review on Solvent Extraction Technologies of Rare Earth Elements from Different Acidic Media: Current Challenges and Future Perspectives. J. Ind. Eng. Chem. 2024;139:1–17. doi: 10.1016/j.jiec.2024.04.042. DOI
Jordan R. B.. The Lanthanide Contraction: What Is Abnormal and Why? Inorg. Chem. 2025;64(5):2207–2216. doi: 10.1021/acs.inorgchem.4c03698. PubMed DOI
Islam M. F., Lin L., Ray D., Premadasa U. I., Ma Y.-Z., Sacci R. L., Kertesz V., Custelcean R., Bryantsev V. S., Doughty B., Thiele N. A.. Conformationally Adaptable Extractant Flexes Strong Lanthanide Reverse-Size Selectivity. J. Am. Chem. Soc. 2025;147(6):5080–5088. doi: 10.1021/jacs.4c15074. PubMed DOI
Pramanik S., Li B., Driscoll D. M., Johnson K. R., Evans B. R., Damron J. T., Ivanov A. S., Jiang D., Einkauf J., Popovs I., Jansone-Popova S.. Tetradentate Ligand’s Chameleon-Like Behavior Offers Recognition of Specific Lanthanides. J. Am. Chem. Soc. 2024;146(37):25669–25679. doi: 10.1021/jacs.4c07332. PubMed DOI PMC
Johnson K. R., Driscoll D. M., Damron J. T., Ivanov A. S., Jansone-Popova S.. Size Selective Ligand Tug of War Strategy to Separate Rare Earth Elements. JACS Au. 2023;3(2):584–591. doi: 10.1021/jacsau.2c00671. PubMed DOI PMC
Liu T., Johnson K. R., Jansone-Popova S., Jiang D.. Advancing Rare-Earth Separation by Machine Learning. JACS Au. 2022;2(6):1428–1434. doi: 10.1021/jacsau.2c00122. PubMed DOI PMC
El Ouardi Y., Virolainen S., Massima Mouele E. S., Laatikainen M., Repo E., Laatikainen K.. The Recent Progress of Ion Exchange for the Separation of Rare Earths from Secondary Resources–A Review. Hydrometallurgy. 2023;218:106047. doi: 10.1016/j.hydromet.2023.106047. DOI
Hatanaka T., Matsugami A., Nonaka T., Takagi H., Hayashi F., Tani T., Ishida N.. Rationally Designed Mineralization for Selective Recovery of the Rare Earth Elements. Nat. Commun. 2017;8(1):15670. doi: 10.1038/ncomms15670. PubMed DOI PMC
Yin X., Wang Y., Bai X., Wang Y., Chen L., Xiao C., Diwu J., Du S., Chai Z., Albrecht-Schmitt T. E., Wang S.. Rare Earth Separations by Selective Borate Crystallization. Nat. Commun. 2017;8(1):1–8. doi: 10.1038/ncomms14438. PubMed DOI PMC
Tasaki-Handa Y., Abe Y., Ooi K., Narita H., Tanaka M., Wakisaka A.. Selective Crystallization of Phosphoester Coordination Polymer for the Separation of Neodymium and Dysprosium: A Thermodynamic Approach. J. Phys. Chem. B. 2016;120(49):12730–12735. doi: 10.1021/acs.jpcb.6b09450. PubMed DOI
Bai Z., Scheibe B., Sperling J. M., Albrecht-Schönzart T. E.. Syntheses and Characterization of Tetrazolate-Based Lanthanide Compounds and Selective Crystallization Separation of Neodymium and Dysprosium. Inorg. Chem. 2022;61(48):19193–19202. doi: 10.1021/acs.inorgchem.2c02840. PubMed DOI
Mangel D. N., Juarez G. J., Carpenter S. H., Steinbrueck A., Lynch V. M., Yang J., Sedgwick A. C., Tondreau A., Sessler J. L.. Deferasirox Derivatives: Ligands for the Lanthanide Series. J. Am. Chem. Soc. 2023;145(40):22206–22212. doi: 10.1021/jacs.3c08375. PubMed DOI
Melegari M., Neri M., Falco A., Tegoni M., Maffini M., Fornari F., Mucchino C., Artizzu F., Serpe A., Marchiò L.. Tailoring the Use of 8-Hydroxyquinolines for the Facile Separation of Iron, Dysprosium and Neodymium. ChemSusChem. 2024;17(21):e202400286. doi: 10.1002/cssc.202400286. PubMed DOI
Bogart J. A., Lippincott C. A., Carroll P. J., Schelter E. J.. An Operationally Simple Method for Separating the Rare-Earth Elements Neodymium and Dysprosium. Angew. Chem., Int. Ed. 2015;54(28):8222–8225. doi: 10.1002/anie.201501659. PubMed DOI
Cole B. E., Falcones I. B., Cheisson T., Manor B. C., Carroll P. J., Schelter E. J.. A Molecular Basis to Rare Earth Separations for Recycling: Tuning the TriNOx Ligand Properties for Improved Performance. Chem. Commun. 2018;54(73):10276–10279. doi: 10.1039/C8CC04409K. PubMed DOI
Cheisson T., Cole B. E., Manor B. C., Carroll P. J., Schelter E. J.. Phosphoryl-Ligand Adducts of Rare Earth-TriNOx Complexes: Systematic Studies and Implications for Separations Chemistry. ACS Sustain. Chem. Eng. 2019;7(5):4993–5001. doi: 10.1021/acssuschemeng.8b05638. DOI
Nelson J. J. M., Cheisson T., Rugh H. J., Gau M. R., Carroll P. J., Schelter E. J.. High-Throughput Screening for Discovery of Benchtop Separations Systems for Selected Rare Earth Elements. Commun. Chem. 2020;3(1):1–6. doi: 10.1038/s42004-019-0253-x. PubMed DOI PMC
Masuya-Suzuki A., Hosobori K., Sawamura R., Abe Y., Karashimada R., Iki N.. Selective Crystallization of Dysprosium Complex from Neodymium/Dysprosium Mixture Enabled by Cooperation of Coordination and Crystallization. Chem. Commun. 2022;58(14):2283–2286. doi: 10.1039/D1CC06174G. PubMed DOI
Falco A., Neri M., Melegari M., Baraldi L., Bonfant G., Tegoni M., Serpe A., Marchiò L.. Semirigid Ligands Enhance Different Coordination Behavior of Nd and Dy Relevant to Their Separation and Recovery in a Non-Aqueous Environment. Inorg. Chem. 2022;61(40):16110–16121. doi: 10.1021/acs.inorgchem.2c02619. PubMed DOI PMC
O’Connell-Danes J. G., Ngwenya B. T., Morrison C. A., Love J. B.. Selective Separation of Light Rare-Earth Elements by Supramolecular Encapsulation and Precipitation. Nat. Commun. 2022;13(1):4497. doi: 10.1038/s41467-022-32178-3. PubMed DOI PMC
O’Connell-Danes J. G., Ozen Ilik B., Hull E. E., Ngwenya B. T., Morrison C. A., Love J. B.. A Simple Supramolecular Approach to Recycling Rare Earth Elements. ACS Sustain. Chem. Eng. 2024;12(25):9301–9305. doi: 10.1021/acssuschemeng.4c03063. DOI
Gao Y., Licup G. L., Bigham N. P., Cantu D. C., Wilson J. J.. Chelator-Assisted Precipitation-Based Separation of the Rare Earth Elements Neodymium and Dysprosium from Aqueous Solutions. Angew. Chem., Int. Ed. 2024;63(42):e202410233. doi: 10.1002/anie.202410233. PubMed DOI
Baranyai Z., Tircsó G., Rösch F.. The Use of the Macrocyclic Chelator DOTA in Radiochemical Separations. Eur. J. Inorg. Chem. 2020;2020(1):36–56. doi: 10.1002/ejic.201900706. DOI
Regueiro-Figueroa M., Esteban-Gomez D., de Blas A., Rodriguez-Blas T., Platas-Iglesias C.. Structure and Dynamics of Lanthanide(III) Complexes with an N-Alkylated Do3a Ligand (H3do3a = 1,4,7,10-Tetraazacyclododecane-1,4,7-Triacetic Acid): A Combined Experimental and DFT Study. Eur. J. Inorg. Chem. 2010;2010(23):3586–3595. doi: 10.1002/ejic.201000334. DOI
Faulkner S., Burton-Pye B. P.. pH Dependent Self-Assembly of Dimetallic Lanthanide Complexes. Chem. Commun. 2005;(2):259. doi: 10.1039/b412329h. PubMed DOI
Quici S., Cavazzini M., Raffo M. C., Botta M., Giovenzana G. B., Ventura B., Accorsi G., Barigelletti F.. Luminescence Properties and Solution Dynamics of Lanthanide Complexes Composed by a Macrocycle Hosting Site and Naphthalene or Quinoline Appended Chromophore. Inorg. Chim. Acta. 2007;360(8):2549–2557. doi: 10.1016/j.ica.2006.12.040. DOI
Polasek M., Caravan P.. Is Macrocycle a Synonym for Kinetic Inertness in Gd(III) Complexes? Effect of Coordinating and Noncoordinating Substituents on Inertness and Relaxivity of Gd(III) Chelates with DO3A-like Ligands. Inorg. Chem. 2013;52(7):4084–4096. doi: 10.1021/ic400227k. PubMed DOI PMC
Regueiro-Figueroa M., Nonat A., Rolla G. A., Esteban-Gómez D., de Blas A., Rodríguez-Blas T., Charbonnière L. J., Botta M., Platas-Iglesias C.. Self-Aggregated Dinuclear Lanthanide(III) Complexes as Potential Bimodal Probes for Magnetic Resonance and Optical Imaging. Chem.–Eur. J. 2013;19(35):11696–11706. doi: 10.1002/chem.201301231. PubMed DOI
Costa J., Balogh E., Turcry V., Tripier R., Le Baccon M. L., Chuburu F., Handel H., Helm L., Tóth É., Merbach A. E.. Unexpected Aggregation of Neutral, Xylene-Cored Dinuclear GdIII Chelates in Aqueous Solution. Chem.–Eur. J. 2006;12(26):6841–6851. doi: 10.1002/chem.200501335. PubMed DOI
Shannon R. D.. Revised Effective Ionic Radii and Systematic Studies of Interatomic Distances in Halides and Chalcogenides. Acta Crystallogr. A. 1976;32(5):751–767. doi: 10.1107/S0567739476001551. DOI
Racow E. E., Kreinbihl J. J., Cosby A. G., Yang Y., Pandey A., Boros E., Johnson C. J.. General Approach to Direct Measurement of the Hydration State of Coordination Complexes in the Gas Phase: Variable Temperature Mass Spectrometry. J. Am. Chem. Soc. 2019;141(37):14650–14660. doi: 10.1021/jacs.9b05874. PubMed DOI
Aime S., Botta M., Fasano M., Marques M. P. M., Geraldes C. F. G. C., Pubanz D., Merbach A. E.. Conformational and Coordination Equilibria on DOTA Complexes of Lanthanide Metal Ions in Aqueous Solution Studied by 1H-NMR Spectroscopy. Inorg. Chem. 1997;36(10):2059–2068. doi: 10.1021/ic961364o. PubMed DOI
Leonard J. P., dos Santos C. M. G., Plush S. E., McCabe T., Gunnlaugsson T.. pH Driven Self-Assembly of a Ternary Lanthanide Luminescence Complex: The Sensing of Anions Using a β-Diketonate-Eu(III) Displacement Assay. Chem. Commun. 2007;(2):129–131. doi: 10.1039/B611487C. PubMed DOI
Aime S., Botta M., Bruce J. I., Mainero V., Parker D., Terreno E.. Modulation of the Water Exchange Rates in [Gd–DO3A] Complex by Formation of Ternary Complexes with Carboxylate Ligands. Chem. Commun. 2001;(1):115–116. doi: 10.1039/b007901o. DOI
Bruce J. I., Dickins R. S., Govenlock L. J., Gunnlaugsson T., Lopinski S., Lowe M. P., Parker D., Peacock R. D., Perry J. J. B., Aime S., Botta M.. The Selectivity of Reversible Oxy-Anion Binding in Aqueous Solution at a Chiral Europium and Terbium Center: Signaling of Carbonate Chelation by Changes in the Form and Circular Polarization of Luminescence Emission. J. Am. Chem. Soc. 2000;122(40):9674–9684. doi: 10.1021/ja001797x. DOI
Di J., Guo S., Chen L., Yi P., Ding G., Chen K., Li M., Lee D., Yan A.. Improved Corrosion Resistance and Thermal Stability of Sintered Nd-Fe-B Magnets with Holmium Substitution. J. Rare Earths. 2018;36(8):826–831. doi: 10.1016/j.jre.2018.03.007. DOI
Wang H.-Z., Li Z.-J., Liu Z., Yan Y., Zhi P.-Y.. Effects of Ho Nanopowders Intergranular Addition on Microstructure and Properties of Sintered Nd–Fe–B. J. Nanoparticle Res. 2021;23(11):237. doi: 10.1007/s11051-021-05188-3. DOI
Wang Y., Li F., Zhao Z., Dong Y., Sun X.. The Novel Extraction Process Based on CYANEX® 572 for Separating Heavy Rare Earths from Ion-Adsorbed Deposit. Sep. Purif. Technol. 2015;151:303–308. doi: 10.1016/j.seppur.2015.07.063. DOI
Dashti S., Shakibania S., Rashchi F., Ghahreman A.. Synergistic, Extractive, and Selective Separation of Light, Medium, and Heavy Rare Earth Elements Using Cyanex 572 and Alamine 336 from a Chloride Medium. Miner. Eng. 2023;204:108447. doi: 10.1016/j.mineng.2023.108447. DOI
Vander Hoogerstraete T., Blanpain B., Van Gerven T., Binnemans K.. From NdFeB Magnets towards the Rare-Earth Oxides: A Recycling Process Consuming Only Oxalic Acid. RSC Adv. 2014;4(109):64099–64111. doi: 10.1039/C4RA13787F. DOI