Macrocyclic Chelators for Aqueous Lanthanide Separations via Precipitation: Toward Sustainable Recycling of Rare-Earths from NdFeB Magnets

. 2025 Jul 02 ; 147 (26) : 22666-22676. [epub] 20250619

Status PubMed-not-MEDLINE Jazyk angličtina Země Spojené státy americké Médium print-electronic

Typ dokumentu časopisecké články

Perzistentní odkaz   https://www.medvik.cz/link/pmid40537887

Rare-earth elements (REEs) are critical materials in modern industry, but their production has a significant environmental footprint. Environmentally friendly separation methods would enable efficient, sustainable recycling of REEs. This work introduces a class of cyclen-based macrocyclic chelators that induce significant differences in solubility for REE chelates, enabling their selective precipitation from pH-neutral aqueous solution. The process was refined using simple coordinating additives (e.g., acetate) to form ternary coordination compounds to fine-tune these chelate solubilities. Conditions were optimized for the REEs found in NdFeB magnets, allowing separations of even adjacent lanthanides by repeated precipitations. Separation factors comparable to those of industrial solvent extraction methods were achieved without organic solvents. Analysis of NdFeB magnets from current electric car motors revealed an unexpected presence of holmium as a supplement and/or replacement for terbium and dysprosium, suggesting shifting industrial trends with implications for future recycling efforts. In a case study, one such automotive magnet was processed to obtain a 99.7% pure neodymium product. Scalable, tunable, and entirely aqueous, this approach advances the sustainable use of REEs toward a circular economy.

Zobrazit více v PubMed

Cheisson T., Schelter E. J.. Rare Earth Elements: Mendeleev’s Bane, Modern Marvels. Science. 2019;363(6426):489–493. doi: 10.1126/science.aau7628. PubMed DOI

Wahsner J., Gale E. M., Rodríguez-Rodríguez A., Caravan P.. Chemistry of MRI Contrast Agents: Current Challenges and New Frontiers. Chem. Rev. 2019;119(2):957–1057. doi: 10.1021/acs.chemrev.8b00363. PubMed DOI PMC

Cotruvo J. A.. The Chemistry of Lanthanides in Biology: Recent Discoveries, Emerging Principles, and Technological Applications. ACS Cent. Sci. 2019;5(9):1496–1506. doi: 10.1021/acscentsci.9b00642. PubMed DOI PMC

Balaram V.. Rare Earth Elements: A Review of Applications, Occurrence, Exploration, Analysis, Recycling, and Environmental Impact. Geosci. Front. 2019;10(4):1285–1303. doi: 10.1016/j.gsf.2018.12.005. DOI

Binnemans K., Jones P. T., Blanpain B., Van Gerven T., Yang Y., Walton A., Buchert M.. Recycling of Rare Earths: A Critical Review. J. Clean. Prod. 2013;51:1–22. doi: 10.1016/j.jclepro.2012.12.037. DOI

Wang P., Yang Y.-Y., Heidrich O., Chen L.-Y., Chen L.-H., Fishman T., Chen W.-Q.. Regional Rare-Earth Element Supply and Demand Balanced with Circular Economy Strategies. Nat. Geosci. 2024;17(1):94–102. doi: 10.1038/s41561-023-01350-9. DOI

Kumari A., Sinha M. K., Pramanik S., Sahu S. K.. Recovery of Rare Earths from Spent NdFeB Magnets of Wind Turbine: Leaching and Kinetic Aspects. Waste Manag. 2018;75:486–498. doi: 10.1016/j.wasman.2018.01.033. PubMed DOI

Golroudbary S. R., Makarava I., Kraslawski A., Repo E.. Global Environmental Cost of Using Rare Earth Elements in Green Energy Technologies. Sci. Total Environ. 2022;832:155022. doi: 10.1016/j.scitotenv.2022.155022. PubMed DOI

Binnemans K., McGuiness P., Jones P. T.. Rare-Earth Recycling Needs Market Intervention. Nat. Rev. Mater. 2021;6(6):459–461. doi: 10.1038/s41578-021-00308-w. DOI

Yang Y., Walton A., Sheridan R., Güth K., Gauß R., Gutfleisch O., Buchert M., Steenari B.-M., Van Gerven T., Jones P. T., Binnemans K.. REE Recovery from End-of-Life NdFeB Permanent Magnet Scrap: A Critical Review. J. Sustain. Metall. 2017;3(1):122–149. doi: 10.1007/s40831-016-0090-4. DOI

Yadav J., Sarker S. K., Bruckard W., Jegatheesan V., Haque N., Singh N., Pramanik B. K.. Greening the Supply Chain: Sustainable Approaches for Rare Earth Element Recovery from Neodymium Iron Boron Magnet Waste. J. Environ. Chem. Eng. 2024;12(4):113169. doi: 10.1016/j.jece.2024.113169. DOI

Pramanik S., Kaur S., Popovs I., Ivanov A. S., Jansone-Popova S.. Emerging Rare Earth Element Separation Technologies. Eur. J. Inorg. Chem. 2024;27(25):e202400064. doi: 10.1002/ejic.202400064. DOI

Chen Z., Li Z., Chen J., Kallem P., Banat F., Qiu H.. Recent Advances in Selective Separation Technologies of Rare Earth Elements: A Review. J. Environ. Chem. Eng. 2022;10(1):107104. doi: 10.1016/j.jece.2021.107104. DOI

Xie F., Zhang T. A., Dreisinger D., Doyle F.. A Critical Review on Solvent Extraction of Rare Earths from Aqueous Solutions. Miner. Eng. 2014;56:10–28. doi: 10.1016/j.mineng.2013.10.021. DOI

Merroune A., Ait Brahim J., Berrada M., Essakhraoui M., Achiou B., Mazouz H., Beniazza R.. A Comprehensive Review on Solvent Extraction Technologies of Rare Earth Elements from Different Acidic Media: Current Challenges and Future Perspectives. J. Ind. Eng. Chem. 2024;139:1–17. doi: 10.1016/j.jiec.2024.04.042. DOI

Jordan R. B.. The Lanthanide Contraction: What Is Abnormal and Why? Inorg. Chem. 2025;64(5):2207–2216. doi: 10.1021/acs.inorgchem.4c03698. PubMed DOI

Islam M. F., Lin L., Ray D., Premadasa U. I., Ma Y.-Z., Sacci R. L., Kertesz V., Custelcean R., Bryantsev V. S., Doughty B., Thiele N. A.. Conformationally Adaptable Extractant Flexes Strong Lanthanide Reverse-Size Selectivity. J. Am. Chem. Soc. 2025;147(6):5080–5088. doi: 10.1021/jacs.4c15074. PubMed DOI

Pramanik S., Li B., Driscoll D. M., Johnson K. R., Evans B. R., Damron J. T., Ivanov A. S., Jiang D., Einkauf J., Popovs I., Jansone-Popova S.. Tetradentate Ligand’s Chameleon-Like Behavior Offers Recognition of Specific Lanthanides. J. Am. Chem. Soc. 2024;146(37):25669–25679. doi: 10.1021/jacs.4c07332. PubMed DOI PMC

Johnson K. R., Driscoll D. M., Damron J. T., Ivanov A. S., Jansone-Popova S.. Size Selective Ligand Tug of War Strategy to Separate Rare Earth Elements. JACS Au. 2023;3(2):584–591. doi: 10.1021/jacsau.2c00671. PubMed DOI PMC

Liu T., Johnson K. R., Jansone-Popova S., Jiang D.. Advancing Rare-Earth Separation by Machine Learning. JACS Au. 2022;2(6):1428–1434. doi: 10.1021/jacsau.2c00122. PubMed DOI PMC

El Ouardi Y., Virolainen S., Massima Mouele E. S., Laatikainen M., Repo E., Laatikainen K.. The Recent Progress of Ion Exchange for the Separation of Rare Earths from Secondary Resources–A Review. Hydrometallurgy. 2023;218:106047. doi: 10.1016/j.hydromet.2023.106047. DOI

Hatanaka T., Matsugami A., Nonaka T., Takagi H., Hayashi F., Tani T., Ishida N.. Rationally Designed Mineralization for Selective Recovery of the Rare Earth Elements. Nat. Commun. 2017;8(1):15670. doi: 10.1038/ncomms15670. PubMed DOI PMC

Yin X., Wang Y., Bai X., Wang Y., Chen L., Xiao C., Diwu J., Du S., Chai Z., Albrecht-Schmitt T. E., Wang S.. Rare Earth Separations by Selective Borate Crystallization. Nat. Commun. 2017;8(1):1–8. doi: 10.1038/ncomms14438. PubMed DOI PMC

Tasaki-Handa Y., Abe Y., Ooi K., Narita H., Tanaka M., Wakisaka A.. Selective Crystallization of Phosphoester Coordination Polymer for the Separation of Neodymium and Dysprosium: A Thermodynamic Approach. J. Phys. Chem. B. 2016;120(49):12730–12735. doi: 10.1021/acs.jpcb.6b09450. PubMed DOI

Bai Z., Scheibe B., Sperling J. M., Albrecht-Schönzart T. E.. Syntheses and Characterization of Tetrazolate-Based Lanthanide Compounds and Selective Crystallization Separation of Neodymium and Dysprosium. Inorg. Chem. 2022;61(48):19193–19202. doi: 10.1021/acs.inorgchem.2c02840. PubMed DOI

Mangel D. N., Juarez G. J., Carpenter S. H., Steinbrueck A., Lynch V. M., Yang J., Sedgwick A. C., Tondreau A., Sessler J. L.. Deferasirox Derivatives: Ligands for the Lanthanide Series. J. Am. Chem. Soc. 2023;145(40):22206–22212. doi: 10.1021/jacs.3c08375. PubMed DOI

Melegari M., Neri M., Falco A., Tegoni M., Maffini M., Fornari F., Mucchino C., Artizzu F., Serpe A., Marchiò L.. Tailoring the Use of 8-Hydroxyquinolines for the Facile Separation of Iron, Dysprosium and Neodymium. ChemSusChem. 2024;17(21):e202400286. doi: 10.1002/cssc.202400286. PubMed DOI

Bogart J. A., Lippincott C. A., Carroll P. J., Schelter E. J.. An Operationally Simple Method for Separating the Rare-Earth Elements Neodymium and Dysprosium. Angew. Chem., Int. Ed. 2015;54(28):8222–8225. doi: 10.1002/anie.201501659. PubMed DOI

Cole B. E., Falcones I. B., Cheisson T., Manor B. C., Carroll P. J., Schelter E. J.. A Molecular Basis to Rare Earth Separations for Recycling: Tuning the TriNOx Ligand Properties for Improved Performance. Chem. Commun. 2018;54(73):10276–10279. doi: 10.1039/C8CC04409K. PubMed DOI

Cheisson T., Cole B. E., Manor B. C., Carroll P. J., Schelter E. J.. Phosphoryl-Ligand Adducts of Rare Earth-TriNOx Complexes: Systematic Studies and Implications for Separations Chemistry. ACS Sustain. Chem. Eng. 2019;7(5):4993–5001. doi: 10.1021/acssuschemeng.8b05638. DOI

Nelson J. J. M., Cheisson T., Rugh H. J., Gau M. R., Carroll P. J., Schelter E. J.. High-Throughput Screening for Discovery of Benchtop Separations Systems for Selected Rare Earth Elements. Commun. Chem. 2020;3(1):1–6. doi: 10.1038/s42004-019-0253-x. PubMed DOI PMC

Masuya-Suzuki A., Hosobori K., Sawamura R., Abe Y., Karashimada R., Iki N.. Selective Crystallization of Dysprosium Complex from Neodymium/Dysprosium Mixture Enabled by Cooperation of Coordination and Crystallization. Chem. Commun. 2022;58(14):2283–2286. doi: 10.1039/D1CC06174G. PubMed DOI

Falco A., Neri M., Melegari M., Baraldi L., Bonfant G., Tegoni M., Serpe A., Marchiò L.. Semirigid Ligands Enhance Different Coordination Behavior of Nd and Dy Relevant to Their Separation and Recovery in a Non-Aqueous Environment. Inorg. Chem. 2022;61(40):16110–16121. doi: 10.1021/acs.inorgchem.2c02619. PubMed DOI PMC

O’Connell-Danes J. G., Ngwenya B. T., Morrison C. A., Love J. B.. Selective Separation of Light Rare-Earth Elements by Supramolecular Encapsulation and Precipitation. Nat. Commun. 2022;13(1):4497. doi: 10.1038/s41467-022-32178-3. PubMed DOI PMC

O’Connell-Danes J. G., Ozen Ilik B., Hull E. E., Ngwenya B. T., Morrison C. A., Love J. B.. A Simple Supramolecular Approach to Recycling Rare Earth Elements. ACS Sustain. Chem. Eng. 2024;12(25):9301–9305. doi: 10.1021/acssuschemeng.4c03063. DOI

Gao Y., Licup G. L., Bigham N. P., Cantu D. C., Wilson J. J.. Chelator-Assisted Precipitation-Based Separation of the Rare Earth Elements Neodymium and Dysprosium from Aqueous Solutions. Angew. Chem., Int. Ed. 2024;63(42):e202410233. doi: 10.1002/anie.202410233. PubMed DOI

Baranyai Z., Tircsó G., Rösch F.. The Use of the Macrocyclic Chelator DOTA in Radiochemical Separations. Eur. J. Inorg. Chem. 2020;2020(1):36–56. doi: 10.1002/ejic.201900706. DOI

Regueiro-Figueroa M., Esteban-Gomez D., de Blas A., Rodriguez-Blas T., Platas-Iglesias C.. Structure and Dynamics of Lanthanide­(III) Complexes with an N-Alkylated Do3a Ligand (H3do3a = 1,4,7,10-Tetraazacyclododecane-1,4,7-Triacetic Acid): A Combined Experimental and DFT Study. Eur. J. Inorg. Chem. 2010;2010(23):3586–3595. doi: 10.1002/ejic.201000334. DOI

Faulkner S., Burton-Pye B. P.. pH Dependent Self-Assembly of Dimetallic Lanthanide Complexes. Chem. Commun. 2005;(2):259. doi: 10.1039/b412329h. PubMed DOI

Quici S., Cavazzini M., Raffo M. C., Botta M., Giovenzana G. B., Ventura B., Accorsi G., Barigelletti F.. Luminescence Properties and Solution Dynamics of Lanthanide Complexes Composed by a Macrocycle Hosting Site and Naphthalene or Quinoline Appended Chromophore. Inorg. Chim. Acta. 2007;360(8):2549–2557. doi: 10.1016/j.ica.2006.12.040. DOI

Polasek M., Caravan P.. Is Macrocycle a Synonym for Kinetic Inertness in Gd­(III) Complexes? Effect of Coordinating and Noncoordinating Substituents on Inertness and Relaxivity of Gd­(III) Chelates with DO3A-like Ligands. Inorg. Chem. 2013;52(7):4084–4096. doi: 10.1021/ic400227k. PubMed DOI PMC

Regueiro-Figueroa M., Nonat A., Rolla G. A., Esteban-Gómez D., de Blas A., Rodríguez-Blas T., Charbonnière L. J., Botta M., Platas-Iglesias C.. Self-Aggregated Dinuclear Lanthanide­(III) Complexes as Potential Bimodal Probes for Magnetic Resonance and Optical Imaging. Chem.–Eur. J. 2013;19(35):11696–11706. doi: 10.1002/chem.201301231. PubMed DOI

Costa J., Balogh E., Turcry V., Tripier R., Le Baccon M. L., Chuburu F., Handel H., Helm L., Tóth É., Merbach A. E.. Unexpected Aggregation of Neutral, Xylene-Cored Dinuclear GdIII Chelates in Aqueous Solution. Chem.–Eur. J. 2006;12(26):6841–6851. doi: 10.1002/chem.200501335. PubMed DOI

Shannon R. D.. Revised Effective Ionic Radii and Systematic Studies of Interatomic Distances in Halides and Chalcogenides. Acta Crystallogr. A. 1976;32(5):751–767. doi: 10.1107/S0567739476001551. DOI

Racow E. E., Kreinbihl J. J., Cosby A. G., Yang Y., Pandey A., Boros E., Johnson C. J.. General Approach to Direct Measurement of the Hydration State of Coordination Complexes in the Gas Phase: Variable Temperature Mass Spectrometry. J. Am. Chem. Soc. 2019;141(37):14650–14660. doi: 10.1021/jacs.9b05874. PubMed DOI

Aime S., Botta M., Fasano M., Marques M. P. M., Geraldes C. F. G. C., Pubanz D., Merbach A. E.. Conformational and Coordination Equilibria on DOTA Complexes of Lanthanide Metal Ions in Aqueous Solution Studied by 1H-NMR Spectroscopy. Inorg. Chem. 1997;36(10):2059–2068. doi: 10.1021/ic961364o. PubMed DOI

Leonard J. P., dos Santos C. M. G., Plush S. E., McCabe T., Gunnlaugsson T.. pH Driven Self-Assembly of a Ternary Lanthanide Luminescence Complex: The Sensing of Anions Using a β-Diketonate-Eu­(III) Displacement Assay. Chem. Commun. 2007;(2):129–131. doi: 10.1039/B611487C. PubMed DOI

Aime S., Botta M., Bruce J. I., Mainero V., Parker D., Terreno E.. Modulation of the Water Exchange Rates in [Gd–DO3A] Complex by Formation of Ternary Complexes with Carboxylate Ligands. Chem. Commun. 2001;(1):115–116. doi: 10.1039/b007901o. DOI

Bruce J. I., Dickins R. S., Govenlock L. J., Gunnlaugsson T., Lopinski S., Lowe M. P., Parker D., Peacock R. D., Perry J. J. B., Aime S., Botta M.. The Selectivity of Reversible Oxy-Anion Binding in Aqueous Solution at a Chiral Europium and Terbium Center: Signaling of Carbonate Chelation by Changes in the Form and Circular Polarization of Luminescence Emission. J. Am. Chem. Soc. 2000;122(40):9674–9684. doi: 10.1021/ja001797x. DOI

Di J., Guo S., Chen L., Yi P., Ding G., Chen K., Li M., Lee D., Yan A.. Improved Corrosion Resistance and Thermal Stability of Sintered Nd-Fe-B Magnets with Holmium Substitution. J. Rare Earths. 2018;36(8):826–831. doi: 10.1016/j.jre.2018.03.007. DOI

Wang H.-Z., Li Z.-J., Liu Z., Yan Y., Zhi P.-Y.. Effects of Ho Nanopowders Intergranular Addition on Microstructure and Properties of Sintered Nd–Fe–B. J. Nanoparticle Res. 2021;23(11):237. doi: 10.1007/s11051-021-05188-3. DOI

Wang Y., Li F., Zhao Z., Dong Y., Sun X.. The Novel Extraction Process Based on CYANEX® 572 for Separating Heavy Rare Earths from Ion-Adsorbed Deposit. Sep. Purif. Technol. 2015;151:303–308. doi: 10.1016/j.seppur.2015.07.063. DOI

Dashti S., Shakibania S., Rashchi F., Ghahreman A.. Synergistic, Extractive, and Selective Separation of Light, Medium, and Heavy Rare Earth Elements Using Cyanex 572 and Alamine 336 from a Chloride Medium. Miner. Eng. 2023;204:108447. doi: 10.1016/j.mineng.2023.108447. DOI

Vander Hoogerstraete T., Blanpain B., Van Gerven T., Binnemans K.. From NdFeB Magnets towards the Rare-Earth Oxides: A Recycling Process Consuming Only Oxalic Acid. RSC Adv. 2014;4(109):64099–64111. doi: 10.1039/C4RA13787F. DOI

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...