• This record comes from PubMed

Wettability Study of Soldered Joints in SiC Ceramics and Combined Ni-SiC Using SnSbTi-Based Solder and Electron Beam Heating

. 2025 Jun 16 ; 18 (12) : . [epub] 20250616

Status PubMed-not-MEDLINE Language English Country Switzerland Media electronic

Document type Journal Article

The reactive soldering of silicon-carbide (SiC) ceramics to a Ni-SiC composite was investigated using an Sn-5Sb-3Ti active solder and electron-beam heating at 750 °C, 850 °C and 950 °C. Wettability: The average contact angle decreased from 94 ± 4° (750 °C) to 60 ± 3° (850 °C) and further to 24 ± 2° (950 °C), demonstrating progressively improved spreading of the filler with increasing temperature. Interfacial reactions: Continuous layers of Ni3(Sn,Sb)4 and Ti6(Sn,Sb)5 formed along the Ni-SiC/filler interface, the latter confirming Ti diffusion that activates the wetting of the composite surface. Mechanical performance: Shear-lap tests on three joints per condition yielded 39 ± 6 MPa (750 °C), 27 ± 2 MPa (850 °C) and 36 ± 15 MPa (950 °C). The highest and lowest individual values at 950 °C were 51 MPa and 21 MPa, respectively. These results show that a higher soldering temperature lowers the contact angle and promotes interfacial reaction, but only a moderate improvement in average joint strength is obtained. These findings demonstrate a flux-free route to bond SiC ceramics with Ni-SiC composites, which is highly relevant for next-generation power-electronics modules and other high-temperature applications.

See more in PubMed

Karakoc O., Koyanagi T., Nozawa T., Katoh Y. Fiber/matrix debonding evaluation of SiCf/SiC composites using micropillar compression technique. Compos. Part B Eng. 2021;224:109189. doi: 10.1016/j.compositesb.2021.109189. DOI

Chen M., Liu H., Zheng H., Fan B., Zhang S., Wang H., Zhang R., Li H., Qian F., Chen Y. Preparation, microstructure, stability in magnesium metallurgy environment of SiC composites. Ceram. Int. 2023;49 Pt B:36572–36579. doi: 10.1016/j.ceramint.2023.08.340. DOI

Choi H., Illés B., Hurtony T., Byun J., Géczy A., Skwarek A. Corrosion problems of SAC-SiC composite solder alloys. Corros. Sci. 2023;224:111488. doi: 10.1016/j.corsci.2023.111488. DOI

Shi Z.-A., Wu J.-M., Fang Z.-Q., Tian C., Wang Q.-W., Mao C., Fu L.-X., Shi Y.-S. Investigation of curing behavior and mechanical properties of SiC ceramics prepared by vat photopolymerization combined with pressureless liquid-phase sintering using Al2O3-coated SiC powder. Addit. Manuf. 2024;79:103942. doi: 10.1016/j.addma.2023.103942. DOI

Lorrette C., Réau A., Briottet L. Mechanical properties of nanostructured silicon carbide consolidated by spark plasma sintering. J. Eur. Ceram. Soc. 2013;33:147–156. doi: 10.1016/j.jeurceramsoc.2012.07.030. DOI

Yang B., Wang J., Yang Z., Xin Z., Zhang N., Zheng H., Wu X. Thermal transport mechanism of AlN/SiG/3C–SiC typical heterostructures. Mater. Today Phys. 2023;30:100948. doi: 10.1016/j.mtphys.2022.100948. DOI

Shanenkov I., Nikitin D., Nassyrbayev A., Vympina Y., Tsimmerman A., Sivkov A. Plasma Dynamic Synthesis of Dispersed Cu/SiC Composites with a Controlled Phase Composition. Met. Mater. Int. 2024;30:814–831. doi: 10.1007/s12540-023-01533-4. DOI

Ma C., He H., Xia F., Xiao Z., Liu Y. Performance of Ni–SiC composites deposited using magnetic-field-assisted electrodeposition under different magnetic-field directions. Ceram. Int. 2023;49 Pt B:35907–35916. doi: 10.1016/j.ceramint.2023.08.271. DOI

Liu W.Q., Lei W.N., Shen Y., Wang C.Y., Qian H.F., Li Q.L. Performance characterization and preparation of Ni-SiC nanocomposites based on SCF-CO2. Integr. Ferroelectr. 2017;179:45–55. doi: 10.1080/10584587.2017.1330606. DOI

Ma C., Zhao D., Xia H., Xia F., Ma Z., Williams T. Microstructure and Properties of Ni-SiC Nanocomposites Fabricated by Ultrasonic-Assisted Electrodeposition. Int. J. Electrochem. Sci. 2020;15:4015–4031. doi: 10.20964/2020.05.56. DOI

Liu Y., Liu J., Salles M.A.V., Zhang Z., Li T., Hu B., Henglein F., Lu R. Building blocks of sharding blockchain systems: Concepts, approaches, and open problems. Comput. Sci. Rev. 2022;46:100513. doi: 10.1016/j.cosrev.2022.100513. DOI

Liu Y., Cui W., Ji X. Bonding mechanism in ultrasonic-assisted soldering of ZrO2 and 304 stainless steel using a micro-alloyed active solder alloy. Mater. Lett. 2022;322:132456. doi: 10.1016/j.matlet.2022.132456. DOI

Guo W., She Z., Xue H., Zhang X. Effect of active Ti element on the bonding characteristic of the Ag(111)/α-Al2O3(0001) interface by using first principle calculation. Ceram. Int. 2020;46:5430–5435. doi: 10.1016/j.ceramint.2019.10.301. DOI

Cheng L., Liu M., Wang X., Yan B., Li G. Effects of active element Ti on interfacial microstructure and bonding strength of SiO2/SiO2 joints soldered using Sn3.5Ag4Ti(Ce,Ga) alloy filler. Mater. Sci. Eng. A. 2017;680:317–323. doi: 10.1016/j.msea.2016.10.080. DOI

Bian H., Fu W., Lei Y., Song X., Liu D., Cao J., Feng J. Wetting and low temperature bonding of zirconia metallized with Sn0.3Ag0.7Cu-Ti alloys. Ceram. Int. 2018;44:11456–11465. doi: 10.1016/j.ceramint.2018.03.207. DOI

Abd El Hamid S.E., Gouda E.S., Abdel Ghany N.A. Effect of Al and Bi addition on the corrosion behaviour, hardness, and melting temperature of lead-free solder alloys. Microelectron. Reliab. 2023;147:115051. doi: 10.1016/j.microrel.2023.115051. DOI

Liu G., Khorsand S., Ji S. Electrochemical corrosion behaviour of Sn-Zn-xBi alloys used for miniature detonating cords. J. Mater. Sci. Technol. 2019;35:1618–1628. doi: 10.1016/j.jmst.2019.03.026. DOI

Liu J.-C., Wang Z.-H., Xie J.-Y., Ma J.-S., Shi Q.-Y., Zhang G., Suganuma K. Effects of intermetallic-forming element additions on microstructure and corrosion behavior of Sn–Zn solder alloys. Corros. Sci. 2016;112:150–159. doi: 10.1016/j.corsci.2016.07.004. DOI

Kolenak R., Melus T., Drapala J., Gogola P., Pasak M. Study of Bond Formation in Ceramic and Composite Materials Ultrasonically Soldered with Bi–Ag–Mg-Type Solder. Materials. 2023;16:2991. doi: 10.3390/ma16082991. PubMed DOI PMC

Kolenak R., Pluhar A., Drapala J., Babincova P., Pasak M. Characterization of Zn-Mg-Sr Type Soldering Alloy and Study of Ultrasonic Soldering of SiC Ceramics and Cu-SiC Composite. Materials. 2023;16:3795. doi: 10.3390/ma16103795. PubMed DOI PMC

Koleňák R., Chachula M., Šebo P., Koleňáková M. Wettability and shear strength of active Sn2Ti solder on Al2O3 ceramics. Solder. Surf. Mt. Technol. 2011;23:224–228. doi: 10.1108/09540911111169066. DOI

Yu W.-Y., Liu S.-H., Liu X.-Y., Shao J.-L., Liu M.-P. Wetting behavior in ultrasonic vibration-assisted brazing of aluminum to graphite using Sn-Ag-Ti active solder. Surf. Rev. Lett. 2015;22:1550035. doi: 10.1142/S0218625X15500353. DOI

Tsao L.C. Microstructural characterization and mechanical properties of microplasma oxidized TiO2/Ti joints soldered using Sn3.5Ag4Ti(Ce) active filler. J. Mater. Sci. Mater. Electron. 2014;25:233–243. doi: 10.1007/s10854-013-1577-4. DOI

Kolenak R., Kostolny I., Drapala J., Babincova P., Pasak M. Characterization of Sn-Sb-Ti Solder Alloy and the Study of Its Use for the Ultrasonic Soldering Process of SiC Ceramics with a Cu–SiC Metal–Ceramic Composite. Materials. 2021;14:6369. doi: 10.3390/ma14216369. PubMed DOI PMC

Kolenak R., Kostolny I., Drapala J., Urminsky J., Pluhar A., Babincova P., Drimal D. Study of Wettability and Solderability of SiC Ceramics with Ni by Use of Sn-Sb-Ti Solder by Heating with Electron Beam in Vacuum. Materials. 2022;15:5301. doi: 10.3390/ma15155301. PubMed DOI PMC

Welding Consumables—Gases and Gas Mixtures for Fusion Welding and Allied Processes. ISO; Geneva, Switzerland: 2008.

Find record

Citation metrics

Loading data ...

Archiving options

Loading data ...