Wettability Study of Soldered Joints in SiC Ceramics and Combined Ni-SiC Using SnSbTi-Based Solder and Electron Beam Heating
Status PubMed-not-MEDLINE Language English Country Switzerland Media electronic
Document type Journal Article
PubMed
40572945
PubMed Central
PMC12195365
DOI
10.3390/ma18122814
PII: ma18122814
Knihovny.cz E-resources
- Keywords
- Ni-SiC composite, SiC ceramics, Sn-Sb-Ti solder, diffusion, electron beam heating, reaction layer, shear strength, soldered joints, wettability,
- Publication type
- Journal Article MeSH
The reactive soldering of silicon-carbide (SiC) ceramics to a Ni-SiC composite was investigated using an Sn-5Sb-3Ti active solder and electron-beam heating at 750 °C, 850 °C and 950 °C. Wettability: The average contact angle decreased from 94 ± 4° (750 °C) to 60 ± 3° (850 °C) and further to 24 ± 2° (950 °C), demonstrating progressively improved spreading of the filler with increasing temperature. Interfacial reactions: Continuous layers of Ni3(Sn,Sb)4 and Ti6(Sn,Sb)5 formed along the Ni-SiC/filler interface, the latter confirming Ti diffusion that activates the wetting of the composite surface. Mechanical performance: Shear-lap tests on three joints per condition yielded 39 ± 6 MPa (750 °C), 27 ± 2 MPa (850 °C) and 36 ± 15 MPa (950 °C). The highest and lowest individual values at 950 °C were 51 MPa and 21 MPa, respectively. These results show that a higher soldering temperature lowers the contact angle and promotes interfacial reaction, but only a moderate improvement in average joint strength is obtained. These findings demonstrate a flux-free route to bond SiC ceramics with Ni-SiC composites, which is highly relevant for next-generation power-electronics modules and other high-temperature applications.
See more in PubMed
Karakoc O., Koyanagi T., Nozawa T., Katoh Y. Fiber/matrix debonding evaluation of SiCf/SiC composites using micropillar compression technique. Compos. Part B Eng. 2021;224:109189. doi: 10.1016/j.compositesb.2021.109189. DOI
Chen M., Liu H., Zheng H., Fan B., Zhang S., Wang H., Zhang R., Li H., Qian F., Chen Y. Preparation, microstructure, stability in magnesium metallurgy environment of SiC composites. Ceram. Int. 2023;49 Pt B:36572–36579. doi: 10.1016/j.ceramint.2023.08.340. DOI
Choi H., Illés B., Hurtony T., Byun J., Géczy A., Skwarek A. Corrosion problems of SAC-SiC composite solder alloys. Corros. Sci. 2023;224:111488. doi: 10.1016/j.corsci.2023.111488. DOI
Shi Z.-A., Wu J.-M., Fang Z.-Q., Tian C., Wang Q.-W., Mao C., Fu L.-X., Shi Y.-S. Investigation of curing behavior and mechanical properties of SiC ceramics prepared by vat photopolymerization combined with pressureless liquid-phase sintering using Al2O3-coated SiC powder. Addit. Manuf. 2024;79:103942. doi: 10.1016/j.addma.2023.103942. DOI
Lorrette C., Réau A., Briottet L. Mechanical properties of nanostructured silicon carbide consolidated by spark plasma sintering. J. Eur. Ceram. Soc. 2013;33:147–156. doi: 10.1016/j.jeurceramsoc.2012.07.030. DOI
Yang B., Wang J., Yang Z., Xin Z., Zhang N., Zheng H., Wu X. Thermal transport mechanism of AlN/SiG/3C–SiC typical heterostructures. Mater. Today Phys. 2023;30:100948. doi: 10.1016/j.mtphys.2022.100948. DOI
Shanenkov I., Nikitin D., Nassyrbayev A., Vympina Y., Tsimmerman A., Sivkov A. Plasma Dynamic Synthesis of Dispersed Cu/SiC Composites with a Controlled Phase Composition. Met. Mater. Int. 2024;30:814–831. doi: 10.1007/s12540-023-01533-4. DOI
Ma C., He H., Xia F., Xiao Z., Liu Y. Performance of Ni–SiC composites deposited using magnetic-field-assisted electrodeposition under different magnetic-field directions. Ceram. Int. 2023;49 Pt B:35907–35916. doi: 10.1016/j.ceramint.2023.08.271. DOI
Liu W.Q., Lei W.N., Shen Y., Wang C.Y., Qian H.F., Li Q.L. Performance characterization and preparation of Ni-SiC nanocomposites based on SCF-CO2. Integr. Ferroelectr. 2017;179:45–55. doi: 10.1080/10584587.2017.1330606. DOI
Ma C., Zhao D., Xia H., Xia F., Ma Z., Williams T. Microstructure and Properties of Ni-SiC Nanocomposites Fabricated by Ultrasonic-Assisted Electrodeposition. Int. J. Electrochem. Sci. 2020;15:4015–4031. doi: 10.20964/2020.05.56. DOI
Liu Y., Liu J., Salles M.A.V., Zhang Z., Li T., Hu B., Henglein F., Lu R. Building blocks of sharding blockchain systems: Concepts, approaches, and open problems. Comput. Sci. Rev. 2022;46:100513. doi: 10.1016/j.cosrev.2022.100513. DOI
Liu Y., Cui W., Ji X. Bonding mechanism in ultrasonic-assisted soldering of ZrO2 and 304 stainless steel using a micro-alloyed active solder alloy. Mater. Lett. 2022;322:132456. doi: 10.1016/j.matlet.2022.132456. DOI
Guo W., She Z., Xue H., Zhang X. Effect of active Ti element on the bonding characteristic of the Ag(111)/α-Al2O3(0001) interface by using first principle calculation. Ceram. Int. 2020;46:5430–5435. doi: 10.1016/j.ceramint.2019.10.301. DOI
Cheng L., Liu M., Wang X., Yan B., Li G. Effects of active element Ti on interfacial microstructure and bonding strength of SiO2/SiO2 joints soldered using Sn3.5Ag4Ti(Ce,Ga) alloy filler. Mater. Sci. Eng. A. 2017;680:317–323. doi: 10.1016/j.msea.2016.10.080. DOI
Bian H., Fu W., Lei Y., Song X., Liu D., Cao J., Feng J. Wetting and low temperature bonding of zirconia metallized with Sn0.3Ag0.7Cu-Ti alloys. Ceram. Int. 2018;44:11456–11465. doi: 10.1016/j.ceramint.2018.03.207. DOI
Abd El Hamid S.E., Gouda E.S., Abdel Ghany N.A. Effect of Al and Bi addition on the corrosion behaviour, hardness, and melting temperature of lead-free solder alloys. Microelectron. Reliab. 2023;147:115051. doi: 10.1016/j.microrel.2023.115051. DOI
Liu G., Khorsand S., Ji S. Electrochemical corrosion behaviour of Sn-Zn-xBi alloys used for miniature detonating cords. J. Mater. Sci. Technol. 2019;35:1618–1628. doi: 10.1016/j.jmst.2019.03.026. DOI
Liu J.-C., Wang Z.-H., Xie J.-Y., Ma J.-S., Shi Q.-Y., Zhang G., Suganuma K. Effects of intermetallic-forming element additions on microstructure and corrosion behavior of Sn–Zn solder alloys. Corros. Sci. 2016;112:150–159. doi: 10.1016/j.corsci.2016.07.004. DOI
Kolenak R., Melus T., Drapala J., Gogola P., Pasak M. Study of Bond Formation in Ceramic and Composite Materials Ultrasonically Soldered with Bi–Ag–Mg-Type Solder. Materials. 2023;16:2991. doi: 10.3390/ma16082991. PubMed DOI PMC
Kolenak R., Pluhar A., Drapala J., Babincova P., Pasak M. Characterization of Zn-Mg-Sr Type Soldering Alloy and Study of Ultrasonic Soldering of SiC Ceramics and Cu-SiC Composite. Materials. 2023;16:3795. doi: 10.3390/ma16103795. PubMed DOI PMC
Koleňák R., Chachula M., Šebo P., Koleňáková M. Wettability and shear strength of active Sn2Ti solder on Al2O3 ceramics. Solder. Surf. Mt. Technol. 2011;23:224–228. doi: 10.1108/09540911111169066. DOI
Yu W.-Y., Liu S.-H., Liu X.-Y., Shao J.-L., Liu M.-P. Wetting behavior in ultrasonic vibration-assisted brazing of aluminum to graphite using Sn-Ag-Ti active solder. Surf. Rev. Lett. 2015;22:1550035. doi: 10.1142/S0218625X15500353. DOI
Tsao L.C. Microstructural characterization and mechanical properties of microplasma oxidized TiO2/Ti joints soldered using Sn3.5Ag4Ti(Ce) active filler. J. Mater. Sci. Mater. Electron. 2014;25:233–243. doi: 10.1007/s10854-013-1577-4. DOI
Kolenak R., Kostolny I., Drapala J., Babincova P., Pasak M. Characterization of Sn-Sb-Ti Solder Alloy and the Study of Its Use for the Ultrasonic Soldering Process of SiC Ceramics with a Cu–SiC Metal–Ceramic Composite. Materials. 2021;14:6369. doi: 10.3390/ma14216369. PubMed DOI PMC
Kolenak R., Kostolny I., Drapala J., Urminsky J., Pluhar A., Babincova P., Drimal D. Study of Wettability and Solderability of SiC Ceramics with Ni by Use of Sn-Sb-Ti Solder by Heating with Electron Beam in Vacuum. Materials. 2022;15:5301. doi: 10.3390/ma15155301. PubMed DOI PMC
Welding Consumables—Gases and Gas Mixtures for Fusion Welding and Allied Processes. ISO; Geneva, Switzerland: 2008.