Low-temperature oxidation of hexagonal boron nitride during oxidative dehydrogenation reactions

. 2025 Jul 02 ; 15 (1) : 22879. [epub] 20250702

Status PubMed-not-MEDLINE Jazyk angličtina Země Velká Británie, Anglie Médium electronic

Typ dokumentu časopisecké články

Perzistentní odkaz   https://www.medvik.cz/link/pmid40595913

Grantová podpora
22-23120S Grantová Agentura České Republiky
22-23120S Grantová Agentura České Republiky
22-23120S Grantová Agentura České Republiky
22-23120S Grantová Agentura České Republiky
22-23120S Grantová Agentura České Republiky
No. LM2023037 Ministerstvo Školství, Mládeže a Tělovýchovy
No. LM2023037 Ministerstvo Školství, Mládeže a Tělovýchovy
No. LM2023037 Ministerstvo Školství, Mládeže a Tělovýchovy
ID:90254 Ministerstvo Školství, Mládeže a Tělovýchovy
ID:90254 Ministerstvo Školství, Mládeže a Tělovýchovy

Odkazy

PubMed 40595913
PubMed Central PMC12217080
DOI 10.1038/s41598-025-05681-y
PII: 10.1038/s41598-025-05681-y
Knihovny.cz E-zdroje

The low-temperature oxidation of hexagonal boron nitride (h-BN) during oxidative dehydrogenation of propane (ODHP) is investigated using a combination of experimental techniques and theoretical modeling. This study explores the role of gas-phase radicals, such as n-propyl and hydroxyl radicals, in initiating the oxidation process, leading to the formation of oxygen-functionalized h-BN edges. Using ab initio molecular dynamics (AIMD) and density functional theory (DFT) calculations, we reveal the mechanism of h-BN oxidation, including hydrogen abstraction, molecular oxygen adsorption, and nitrogen oxide desorption. Experimental results confirm that oxidation occurs only in the presence of both oxygen and propane, demonstrating a critical dependence on reactor geometry on gas-phase radical generation. The oxidation process leads to the incorporation of oxygen into h-BN, forming boron oxyhydroxide phases that influence catalytic activity. These findings provide new insights into h-BN behavior under ODHP conditions and offer guidance for optimizing boron-based catalysts for selective alkane dehydrogenation.

Zobrazit více v PubMed

Zuo, C. & Su, Q. Research progress on propylene Preparation by propane dehydrogenation. PubMed PMC

Nawaz, Z. Light alkane dehydrogenation to light olefin technologies: a comprehensive review.

Carrero, C. A., Schloegl, R., Wachs, I. E. & Schomaecker, R. Critical literature review of the kinetics for the oxidative dehydrogenation of propane over Well-Defined supported vanadium oxide catalysts.

Grant, J. T. et al. Selective oxidative dehydrogenation of propane to Propene using Boron nitride catalysts. PubMed

Grant, J. T. et al. Boron and Boron-Containing catalysts for the oxidative dehydrogenation of propane.

McDermott, W. P., Cendejas, M. C. & Hermans, I. Recent advances in the Understanding of Boron-Containing catalysts for the selective oxidation of alkanes to olefins.

Zhang, Z. et al. Unraveling radical and oxygenate routes in the oxidative dehydrogenation of propane over Boron nitride. PubMed PMC

Nadjafi, M. et al. On the importance of benchmarking the Gas-Phase pyrolysis reaction in the oxidative dehydrogenation of propane.

Cendejas, M. C. et al. Tracking active phase behavior on Boron nitride during the oxidative dehydrogenation of propane using Operando X-ray Raman spectroscopy. PubMed

Tian, J. et al. Understanding the origin of selective oxidative dehydrogenation of propane on boron-based catalysts.

Kraus, P. & Lindstedt, R. P. It’s a gas: oxidative dehydrogenation of propane over Boron nitride catalysts.

Zhang, X. et al. Radical chemistry and reaction mechanisms of propane oxidative dehydrogenation over hexagonal Boron nitride catalysts. PubMed

Venegas, J. M. et al. Why Boron nitride is such a selective catalyst for the oxidative dehydrogenation of propane. PubMed

Venegas, J. M., McDermott, W. P. & Hermans, I. Serendipity in catalysis research: boron-Based materials for alkane oxidative dehydrogenation. PubMed

Venegas, J. M. & Hermans, I. The influence of reactor parameters on the Boron Nitride-Catalyzed oxidative dehydrogenation of propane.

Tian, J. et al. Hexagonal Boron nitride catalyst in a fixed-bed reactor for exothermic propane oxidation dehydrogenation.

Xu, H. T. A. B. Kinetic insights into boron-based materials catalyzed oxidative dehydrogenation of light alkanes (2024). PubMed PMC

Miao, B. et al. Adsorption and activation of small molecules on Boron nitride catalysts. PubMed

Gao, X. et al. Performance descriptor of subsurface Metal-Promoted Boron catalysts for Low-Temperature propane oxidative dehydrogenation to propylene. PubMed

Liu, Y., Liu, Z., Wang, D. & Lu, A. H. Suppressing deep oxidation by detached Nano-sized Boron oxide in oxidative dehydrogenation of propane revealed by the density functional theory study.

Wang, G., Yan, Y., Zhang, X., Gao, X. & Xie, Z. Three-Dimensional porous hexagonal Boron nitride fibers as Metal-Free catalysts with enhanced catalytic activity for oxidative dehydrogenation of propane.

Liu, Z., Lu, W. D., Wang, D. & Lu, A. H. Interplay of On- and Off-Surface processes in the B2O3-Catalyzed oxidative dehydrogenation of propane: A DFT study.

Tian, J. et al. Dynamically formed active sites on liquid Boron oxide for selective oxidative dehydrogenation of propane.

Love, A. M. et al. Synthesis and characterization of Silica-Supported Boron oxide catalysts for the oxidative dehydrogenation of propane.

Love, A. M. et al. Probing the transformation of Boron nitride catalysts under oxidative dehydrogenation conditions. PubMed

Dorn, R. W. et al. Identifying the molecular edge termination of exfoliated hexagonal Boron nitride nanosheets with Solid-State NMR spectroscopy and Plane-Wave DFT calculations.

Dorn, R. W. et al. Structure determination of Boron-Based oxidative dehydrogenation heterogeneous catalysts with ultrahigh field 35.2 T 11B Solid-State NMR spectroscopy. PubMed PMC

Supporting Information, Figure S1 (this work).

Kurumbail, U., McDermott, W. P., Lebrón-Rodríguez, E. A. & Hermans, I. From microkinetic model to process: understanding the role of the Boron nitride surface and gas phase chemistry in the oxidative dehydrogenation of propane.

Knox, J. H. The gaseous products from the oxidation of propane at 318-Degrees-C.

Zhou, Y. L. et al. Enhanced performance of Boron nitride catalysts with induction period for the oxidative dehydrogenation of Ethane to ethylene.

Jacobson, N., Farmer, S., Moore, A. & Sayir, H. High-Temperature oxidation of Boron nitride: I, monolithic Boron nitride.

Oda, K. & Yoshio, T. Oxidation-Kinetics of hexagonal Boron-Nitride powder.

Li, L. H., Cervenka, J., Watanabe, K., Taniguchi, T. & Chen, Y. Strong oxidation resistance of atomically thin Boron nitride nanosheets. PubMed

Perdew, J., Burke, K. & Ernzerhof, M. Generalized gradient approximation made simple. PubMed

Grimme, S., Antony, J., Ehrlich, S. & Krieg, H. A consistent and accurate Ab initio parametrization of density functional dispersion correction (DFT-D) for the 94 elements H-Pu. PubMed

Rubes, M., He, J. J., Nachtigall, P. & Bludsky, O. Palladium clusters on graphene support: an Ab initio study.

Rubes, M., He, J., Nachtigall, P. & Bludsky, O. Direct hydrodeoxygenation of phenol over carbon-supported Ru catalysts: a computational study.

Kresse, G. & Hafner, J. Ab initio molecular dynamics for open-shell transition metals. PubMed

Kresse, G. & Joubert, D. From ultrasoft pseudopotentials to the projector augmented-wave method.

Gaussian 16 Rev. C.01Wallingford, CT (2016).

Rubeš, M. et al. Temperature dependence of carbon monoxide adsorption on a High-Silica H-FER zeolite.

Henkelman, G. & Jónsson, H. A dimer method for finding saddle points on high dimensional potential surfaces using only first derivatives.

Henkelman, G., Uberuaga, B. P. & Jónsson, H. A climbing image nudged elastic band method for finding saddle points and minimum energy paths.

Gong, Y. & Zhou, M. Matrix isolation infrared spectroscopic and theoretical study of the hydrolysis of Boron dioxide in solid argon. PubMed

Song, Y., Kim, S., Lim, M., Cho, H. B. & Choa, Y. H. Synthesis of size-controlled and in-situ OH functionalized hexagonal Boron nitride powder by hetero-phase reaction.

Gültekin, K., Uğuz, G. & Özel, A. Improvements of the structural, thermal, and mechanical properties of structural adhesive with functionalized Boron nitride nanoparticles.

Netzsch, P., Pielnhofer, F., Hoppe, H. A., From S-O-S to B-O-S to B-O-B & Bridges Ba[B(S(2)O(7))(2)](2) as a model system for the structural diversity in borosulfate chemistry. PubMed

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...