Transcriptomic and Proteomic Changes in the Brain Along with Increasing Phenotypic Severity in a Rat Model of Neonatal Hyperbilirubinemia
Jazyk angličtina Země Švýcarsko Médium electronic
Typ dokumentu časopisecké články
Grantová podpora
FSE+ 2021/2027 n. 2023/3340
JTR, JPL were founded in part by DOST, in part by an internal grant from FIF. SG, CT, GV: Internal grant FIF. LV, AS and DK were supported by the grant MH CZ-DRO-VFN64165 from the Czech Ministry of Health. AFB was supported by Fondo Sociale Europeo Plus.
PubMed
40650037
PubMed Central
PMC12249923
DOI
10.3390/ijms26136262
PII: ijms26136262
Knihovny.cz E-zdroje
- Klíčová slova
- Grm1, Gunn rats, PKC3, calcium, dystonia, gene clustering, glutamate receptors, kernicterus spectrum disorder, neonatal jaundice, neurotoxicity,
- MeSH
- bilirubin metabolismus MeSH
- fenotyp MeSH
- kernikterus metabolismus genetika MeSH
- krysa rodu Rattus MeSH
- modely nemocí na zvířatech MeSH
- mozek * metabolismus patologie MeSH
- novorozená zvířata MeSH
- novorozenecká hyperbilirubinemie * metabolismus genetika patologie MeSH
- potkani Gunn MeSH
- proteom * metabolismus MeSH
- proteomika metody MeSH
- stanovení celkové genové exprese MeSH
- transkriptom * MeSH
- zvířata MeSH
- Check Tag
- krysa rodu Rattus MeSH
- mužské pohlaví MeSH
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- Názvy látek
- bilirubin MeSH
- proteom * MeSH
Kernicterus spectrum disorder is the permanent and highly disabling neurologic sequel of neonatal exposure to hyperbilirubinemia, presenting, among other symptoms, variable and untreatable motor disabilities. To search for potential biomolecular explanations, we used a Gunn rat colony exhibiting spontaneous hyperbilirubinemia and a large variability of motor deficits on a beam-walking test. Histological and microscopic analyses confirmed worsening damage in the cerebellum (Cll; hypoplasia, increased death of neurons, and disrupted astroglial structures) and parietal motor cortex (hCtx; increased cell sufferance and astrogliosis). Clustering and network analyses of transcriptomic data reveal rearrangement of the physiological expression patterns and signaling pathways associated with bilirubin neurotoxicity. Bilirubin content among hyperbilirubinemic (jj) animals is overlapped, which suggests that the amount of bilirubin challenge does not fully explain the tissue, transcriptomic, proteomic, and neurobehavioral alterations. The expression of nine genes involved in key postnatal brain development processes is permanently altered in a phenotype-dependent manner. Among them, Grm1, a metabotropic glutamatergic receptor involved in glutamate neurotoxicity, is consistently downregulated in both brain regions both at the transcriptomic and proteomic levels. Our results support the role of Grm1 and glutamate as biomolecular markers of ongoing bilirubin neurotoxicity, suggesting the possibility to improve diagnosis by 1H-MR spectroscopy.
Department of Life Sciences University of Trieste 34139 Trieste Italy
Department of Medical Laboratory Science Hebron University Hebron P785 Palestine
Department of Medical Surgical and Health Sciences University of Trieste 34127 Trieste Italy
Zobrazit více v PubMed
Le Pichon J.-B., Riordan S.M., Watchko J., Shapiro S.M. The Neurological Sequelae of Neonatal Hyperbilirubinemia: Definitions, Diagnosis and Treatment of the Kernicterus Spectrum Disorders (KSDs) Curr. Pediatr. Rev. 2017;13:199–209. doi: 10.2174/1573396313666170815100214. PubMed DOI
Riordan S.M., Shapiro S.M. Review of Bilirubin Neurotoxicity I: Molecular Biology and Neuropathology of Disease. Pediatr. Res. 2020;87:327–331. doi: 10.1038/s41390-019-0608-0. PubMed DOI
Shapiro S.M. Definition of the Clinical Spectrum of Kernicterus and Bilirubin-Induced Neurologic Dysfunction (BIND) J. Perinatol. 2005;25:54–59. doi: 10.1038/sj.jp.7211157. PubMed DOI
Shapiro S.M., Nakamura H. Bilirubin and the Auditory System. J. Perinatol. 2001;21:S52–S55. doi: 10.1038/sj.jp.7210635. PubMed DOI
Watchko J.F., Painter M.J., Panigrahy A. Are the Neuromotor Disabilities of Bilirubin-Induced Neurologic Dysfunction Disorders Related to the Cerebellum and Its Connections? Semin. Fetal. Neonatal Med. 2015;20:47–51. doi: 10.1016/j.siny.2014.12.004. PubMed DOI
Watchko J.F., Maisels M.J. The Enigma of Low Bilirubin Kernicterus in Premature Infants: Why Does It Still Occur, and Is It Preventable? Semin. Perinatol. 2014;38:397–406. doi: 10.1053/j.semperi.2014.08.002. PubMed DOI
Wisnowski J.L., Panigrahy A., Painter M.J., Watchko J.F. Magnetic Resonance Imaging Abnormalities in Advanced Acute Bilirubin Encephalopathy Highlight Dentato-Thalamo-Cortical Pathways. J. Pediatr. 2016;174:260–263. doi: 10.1016/j.jpeds.2016.03.065. PubMed DOI
Diala U.M., Usman F., Appiah D., Hassan L., Ogundele T., Abdullahi F., Satrom K.M., Bakker C.J., Lee B.W., Slusher T.M. Global Prevalence of Severe Neonatal Jaundice among Hospital Admissions: A Systematic Review and Meta-Analysis. J. Clin. Med. 2023;12:3738. doi: 10.3390/jcm12113738. PubMed DOI PMC
ElTatawy S.S., Elmazzahy E.A., El Shennawy A.M., Madani H.A., Abou Youssef H., Iskander I.F. The Spectrum of Bilirubin Neurotoxicity in Term and Near-Term Babies with Hyperbilirubinemia: Does Outcome Improve with Time? Early Hum. Dev. 2020;140:104909. doi: 10.1016/j.earlhumdev.2019.104909. PubMed DOI
Good W.V., Wong R.J., Norcia A.M., Hou C., Cellucci J., McGovern M.Q., Wong-Kee-You A., Acevedo Munares G., Richburg D., Loveridge-easther C., et al. Effect of Bilirubin on Visuocortical Development in Preterm Infants. J. Perinatol. 2025:1–8. doi: 10.1038/s41372-025-02213-4. PubMed DOI
Jayanti S., Ghersi-Egea J.-F., Strazielle N., Tiribelli C., Gazzin S. Severe Neonatal Hyperbilirubinemia and the Brain: The Old but Still Evolving Story. Pediatr. Med. 2021;4 doi: 10.21037/pm-21-5. DOI
Karimzadeh P., Fallahi M., Kazemian M., Taslimi Taleghani N., Nouripour S., Radfar M. Bilirubin Induced Encephalopathy. Iran. J. Child Neurol. 2020;14:7–19. PubMed PMC
Kemper A.R., Newman T.B., Slaughter J.L., Maisels M.J., Watchko J.F., Downs S.M., Grout R.W., Bundy D.G., Stark A.R., Bogen D.L., et al. Clinical Practice Guideline Revision: Management of Hyperbilirubinemia in the Newborn Infant 35 or More Weeks of Gestation. Pediatrics. 2022;150:e2022058859. doi: 10.1542/peds.2022-058859. PubMed DOI
Kumar V., Kumar P., Sundaram V., Munjal S.K., Malhi P., Panda N.K. Childhood Neurodevelopmental Outcomes of Survivors of Acute Bilirubin Encephalopathy: A Retrospective Cohort Study. Early Hum. Dev. 2021;158:105380. doi: 10.1016/j.earlhumdev.2021.105380. PubMed DOI
Qian S., Kumar P., Testai F.D. Bilirubin Encephalopathy. Curr. Neurol. Neurosci. Rep. 2022;22:343–353. doi: 10.1007/s11910-022-01204-8. PubMed DOI
Vidavalur R., Schettler K.F., Dani C., Fouzas S., Mimoso G., Sanchez-Luna M., Bhutani V.K., deLuca D. Trends of Extreme Hyperbilirubinemia Related Infant Mortality in Select European Countries (1990–2019) Pediatr. Res. 2024:1–6. doi: 10.1038/s41390-024-03695-2. PubMed DOI
Shapiro S.M. Chronic Bilirubin Encephalopathy: Diagnosis and Outcome. Semin. Fetal. Neonatal Med. 2010;15:157–163. doi: 10.1016/j.siny.2009.12.004. PubMed DOI
Watchko J.F., Tiribelli C. Bilirubin-Induced Neurologic Damage—Mechanisms and Management Approaches. N. Engl. J. Med. 2013;369:2021–2030. doi: 10.1056/NEJMra1308124. PubMed DOI
Llido J.P., Fioriti E., Pascut D., Giuffrè M., Bottin C., Zanconati F., Tiribelli C., Gazzin S. Bilirubin-Induced Transcriptomic Imprinting in Neonatal Hyperbilirubinemia. Biology. 2023;12:834. doi: 10.3390/biology12060834. PubMed DOI PMC
Gazzin S., Zelenka J., Zdrahalova L., Konickova R., Zabetta C.C., Giraudi P.J., Berengeno A.L., Raseni A., Robert M.C., Vitek L., et al. Bilirubin Accumulation and Cyp mRNA Expression in Selected Brain Regions of Jaundiced Gunn Rat Pups. Pediatr. Res. 2012;71:653–660. doi: 10.1038/pr.2012.23. PubMed DOI
Gazzin S., Dal Ben M., Montrone M., Jayanti S., Lorenzon A., Bramante A., Bottin C., Moretti R., Tiribelli C. Curcumin Prevents Cerebellar Hypoplasia and Restores the Behavior in Hyperbilirubinemic Gunn Rat by a Pleiotropic Effect on the Molecular Effectors of Brain Damage. Int. J. Mol. Sci. 2021;22:299. doi: 10.3390/ijms22010299. PubMed DOI PMC
Grillner S. The Motor Infrastructure: From Ion Channels to Neuronal Networks. Nat. Rev. Neurosci. 2003;4:573–586. doi: 10.1038/nrn1137. PubMed DOI
Robert M.C., Furlan G., Rosso N., Gambaro S.E., Apitsionak F., Vianello E., Tiribelli C., Gazzin S. Alterations in the Cell Cycle in the Cerebellum of Hyperbilirubinemic Gunn Rat: A Possible Link with Apoptosis? PLoS ONE. 2013;8:e79073. doi: 10.1371/journal.pone.0079073. PubMed DOI PMC
Vianello E., Zampieri S., Marcuzzo T., Tordini F., Bottin C., Dardis A., Zanconati F., Tiribelli C., Gazzin S. Histone Acetylation as a New Mechanism for Bilirubin-Induced Encephalopathy in the Gunn Rat. Sci. Rep. 2018;8:13690. doi: 10.1038/s41598-018-32106-w. PubMed DOI PMC
Dityatev A., Seidenbecher C.I., Schachner M. Compartmentalization from the Outside: The Extracellular Matrix and Functional Microdomains in the Brain. Trends Neurosci. 2010;33:503–512. doi: 10.1016/j.tins.2010.08.003. PubMed DOI
Gottschling C., Wegrzyn D., Denecke B., Faissner A. Elimination of the Four Extracellular Matrix Molecules Tenascin-C, Tenascin-R, Brevican and Neurocan Alters the Ratio of Excitatory and Inhibitory Synapses. Sci. Rep. 2019;9:13939. doi: 10.1038/s41598-019-50404-9. PubMed DOI PMC
Mody M., Cao Y., Cui Z., Tay K.-Y., Shyong A., Shimizu E., Pham K., Schultz P., Welsh D., Tsien J.Z. Genome-Wide Gene Expression Profiles of the Developing Mouse Hippocampus. Proc. Natl. Acad. Sci. USA. 2001;98:8862–8867. doi: 10.1073/pnas.141244998. PubMed DOI PMC
Okuda H., Tatsumi K., Morita S., Shibukawa Y., Korekane H., Horii-Hayashi N., Wada Y., Taniguchi N., Wanaka A. Chondroitin Sulfate Proteoglycan Tenascin-R Regulates Glutamate Uptake by Adult Brain Astrocytes*. J. Biol. Chem. 2014;289:2620–2631. doi: 10.1074/jbc.M113.504787. PubMed DOI PMC
Bandeira F., Lent R., Herculano-Houzel S. Changing Numbers of Neuronal and Non-Neuronal Cells Underlie Postnatal Brain Growth in the Rat. Proc. Natl. Acad. Sci. USA. 2009;106:14108–14113. doi: 10.1073/pnas.0804650106. PubMed DOI PMC
Nikolić M., Gardner H.A.R., Tucker K.L. Postnatal Neuronal Apoptosis in the Cerebral Cortex: Physiological and Pathophysiological Mechanisms. Neuroscience. 2013;254:369–378. doi: 10.1016/j.neuroscience.2013.09.035. PubMed DOI
Pfisterer U., Khodosevich K. Neuronal Survival in the Brain: Neuron Type-Specific Mechanisms. Cell Death Dis. 2017;8:e2643. doi: 10.1038/cddis.2017.64. PubMed DOI PMC
Uribe V., Wong B.K.Y., Graham R.K., Cusack C.L., Skotte N.H., Pouladi M.A., Xie Y., Feinberg K., Ou Y., Ouyang Y., et al. Rescue from Excitotoxicity and Axonal Degeneration Accompanied by Age-Dependent Behavioral and Neuroanatomical Alterations in Caspase-6-Deficient Mice. Hum. Mol. Genet. 2012;21:1954–1967. doi: 10.1093/hmg/dds005. PubMed DOI PMC
Iruela-Arispe M.L., Liska D.J., Sage E.H., Bornstein P. Differential Expression of Thrombospondin 1, 2, and 3 during Murine Development. Dev. Dyn. 1993;197:40–56. doi: 10.1002/aja.1001970105. PubMed DOI
Wang S., Hu T., Wang Z., Li N., Zhou L., Liao L., Wang M., Liao L., Wang H., Zeng L., et al. Macroglia-Derived Thrombospondin 2 Regulates Alterations of Presynaptic Proteins of Retinal Neurons Following Elevated Hydrostatic Pressure. PLOS ONE. 2017;12:e0185388. doi: 10.1371/journal.pone.0185388. PubMed DOI PMC
Zhou H.-J., Zhang H.-N., Tang T., Zhong J.-H., Qi Y., Luo J.-K., Lin Y., Yang Q.-D., Li X.-Q. Alteration of Thrombospondin-1 and -2 in Rat Brains Following Experimental Intracerebral Hemorrhage. J. Neurosurg. 2010;113:820–825. doi: 10.3171/2010.1.JNS09637. PubMed DOI
Aelst L.V., D’Souza-Schorey C. Rho GTPases and Signaling Networks. Genes Dev. 1997;11:2295–2322. doi: 10.1101/gad.11.18.2295. PubMed DOI
Foletta V.C., Brown F.D., Scott Young III W. Cloning of Rat ARHGAP4/C1, a RhoGAP Family Member Expressed in the Nervous System That Colocalizes with the Golgi Complex and Microtubules. Mol. Brain Res. 2002;107:65–79. doi: 10.1016/S0169-328X(02)00448-5. PubMed DOI
Luo L. RHO GTPASES in Neuronal Morphogenesis. Nat. Rev. Neurosci. 2000;1:173–180. doi: 10.1038/35044547. PubMed DOI
Nishi M., Takeshima H., Houtani T., Nakagawara K., Noda T., Sugimoto T. RhoN, a Novel Small GTP-Binding Protein Expressed Predominantly in Neurons and Hepatic Stellate Cells. Mol. Brain Res. 1999;67:74–81. doi: 10.1016/S0169-328X(99)00039-X. PubMed DOI
Olenik C., Barth H., Just I., Aktories K., Meyer D.K. Gene Expression of the Small GTP-Binding Proteins RhoA, RhoB, Rac1, and Cdc42 in Adult Rat Brain. Mol. Brain Res. 1997;52:263–269. doi: 10.1016/S0169-328X(97)00270-2. PubMed DOI
Olenik C., Aktories K., Meyer D.K. Differential Expression of the Small GTP-Binding Proteins RhoA, RhoB, Cdc42u and Cdc42b in Developing Rat Neocortex. Mol. Brain Res. 1999;70:9–17. doi: 10.1016/S0169-328X(99)00121-7. PubMed DOI
Vadodaria K., Jessberger S. Maturation and Integration of Adult Born Hippocampal Neurons: Signal Convergence onto Small Rho GTPases. Front. Synaptic Neurosci. 2013;5:4. doi: 10.3389/fnsyn.2013.00004. PubMed DOI PMC
Vogt D.L., Gray C.D., Young W.S., Orellana S.A., Malouf A.T. ARHGAP4 Is a Novel RhoGAP That Mediates Inhibition of Cell Motility and Axon Outgrowth. Mol. Cell. Neurosci. 2007;36:332–342. doi: 10.1016/j.mcn.2007.07.004. PubMed DOI PMC
Gregorio I., Braghetta P., Bonaldo P., Cescon M. Collagen VI in Healthy and Diseased Nervous System. Dis. Model. Mech. 2018;11:dmm032946. doi: 10.1242/dmm.032946. PubMed DOI PMC
Moeendarbary E., Weber I.P., Sheridan G.K., Koser D.E., Soleman S., Haenzi B., Bradbury E.J., Fawcett J., Franze K. The Soft Mechanical Signature of Glial Scars in the Central Nervous System. Nat. Commun. 2017;8:14787. doi: 10.1038/ncomms14787. PubMed DOI PMC
Miller J.A., Nathanson J., Franjic D., Shim S., Dalley R.A., Shapouri S., Smith K.A., Sunkin S.M., Bernard A., Bennett J.L., et al. Conserved Molecular Signatures of Neurogenesis in the Hippocampal Subgranular Zone of Rodents and Primates. Development. 2013;140:4633–4644. doi: 10.1242/dev.097212. PubMed DOI PMC
Urbán N., Guillemot F. Neurogenesis in the Embryonic and Adult Brain: Same Regulators, Different Roles. Front. Cell. Neurosci. 2014;8:396. doi: 10.3389/fncel.2014.00396. PubMed DOI PMC
Cho Y., Gong T.-W.L., Stöver T., Lomax M.I., Altschuler R.A. Gene Expression Profiles of the Rat Cochlea, Cochlear Nucleus, and Inferior Colliculus. J. Assoc. Res. Otolaryngol. 2002;3:54–67. doi: 10.1007/s101620010042. PubMed DOI PMC
Schubert D., Martens G.J.M., Kolk S.M. Molecular Underpinnings of Prefrontal Cortex Development in Rodents Provide Insights into the Etiology of Neurodevelopmental Disorders. Mol. Psychiatry. 2015;20:795–809. doi: 10.1038/mp.2014.147. PubMed DOI PMC
Amin S.B., Smith T., Wang H. Is Neonatal Jaundice Associated with Autism Spectrum Disorders: A Systematic Review. J. Autism Dev. Disord. 2011;41:1455–1463. doi: 10.1007/s10803-010-1169-6. PubMed DOI PMC
Ayoub M.A., Angelicheva D., Vile D., Chandler D., Morar B., Cavanaugh J.A., Visscher P.M., Jablensky A., Pfleger K.D.G., Kalaydjieva L. Deleterious GRM1 Mutations in Schizophrenia. PLoS ONE. 2012;7:e32849. doi: 10.1371/journal.pone.0032849. PubMed DOI PMC
Blacker C.J., Lewis C.P., Frye M.A., Veldic M. Metabotropic Glutamate Receptors as Emerging Research Targets in Bipolar Disorder. Psychiatry Res. 2017;257:327–337. doi: 10.1016/j.psychres.2017.07.059. PubMed DOI
Cho H.P., Garcia-Barrantes P.M., Brogan J.T., Hopkins C.R., Niswender C.M., Rodriguez A.L., Venable D.F., Morrison R.D., Bubser M., Daniels J.S., et al. Chemical Modulation of Mutant mGlu1 Receptors Derived from Deleterious GRM1 Mutations Found in Schizophrenics. ACS Chem. Biol. 2014;9:2334–2346. doi: 10.1021/cb500560h. PubMed DOI PMC
De Rosa A., Fontana A., Nuzzo T., Garofalo M., Di Maio A., Punzo D., Copetti M., Bertolino A., Errico F., Rampino A., et al. Machine Learning Algorithm Unveils Glutamatergic Alterations in the Post-Mortem Schizophrenia Brain. Schizophrenia. 2022;8:8. doi: 10.1038/s41537-022-00231-1. PubMed DOI PMC
Gama Marques J., Arantes-Gonçalves F. A Perspective on a Possible Relation Between the Psychopathology of the Schizophrenia/Schizoaffective Spectrum and Unconjugated Bilirubin: A Longitudinal Protocol Study. Front. Psychiatry. 2018;9:146. doi: 10.3389/fpsyt.2018.00146. PubMed DOI PMC
Gazzin S., Bellarosa C., Tiribelli C. Molecular Events in Brain Bilirubin Toxicity Revisited. Pediatr. Res. 2024;95:1734–1740. doi: 10.1038/s41390-024-03084-9. PubMed DOI
Hagihara H., Ohira K., Toyama K., Miyakawa T. Expression of the AMPA Receptor Subunits GluR1 and GluR2 Is Associated with Granule Cell Maturation in the Dentate Gyrus. Front. Neurosci. 2011;5:100. doi: 10.3389/fnins.2011.00100. PubMed DOI PMC
Hayashida M., Miyaoka T., Tsuchie K., Araki T., Izuhara M., Miura S., Kanayama M., Ohtsuki K., Nagahama M., Azis I.A., et al. Parvalbumin-Positive GABAergic Interneurons Deficit in the Hippocampus in Gunn Rats: A Possible Hyperbilirubinemia-Induced Animal Model of Schizophrenia. Heliyon. 2019;5:e02037. doi: 10.1016/j.heliyon.2019.e02037. PubMed DOI PMC
Hokkanen L., Launes J., Michelsson K. Adult Neurobehavioral Outcome of Hyperbilirubinemia in Full Term Neonates—A 30 Year Prospective Follow-up Study. PeerJ. 2014;2:e294. doi: 10.7717/peerj.294. PubMed DOI PMC
Holt A.G., Asako M., Lomax C.A., MacDonald J.W., Tong L., Lomax M.I., Altschuler R.A. Deafness-Related Plasticity in the Inferior Colliculus: Gene Expression Profiling Following Removal of Peripheral Activity. J. Neurochem. 2005;93:1069–1086. doi: 10.1111/j.1471-4159.2005.03090.x. PubMed DOI
Liaury K., Miyaoka T., Tsumori T., Furuya M., Wake R., Ieda M., Tsuchie K., Taki M., Ishihara K., Tanra A.J., et al. Morphological Features of Microglial Cells in the Hippocampal Dentate Gyrus of Gunn Rat: A Possible Schizophrenia Animal Model. J. Neuroinflammation. 2012;9:56. doi: 10.1186/1742-2094-9-56. PubMed DOI PMC
Lum J.S., Fernandez F., Matosin N., Andrews J.L., Huang X.-F., Ooi L., Newell K.A. Neurodevelopmental Expression Profile of Dimeric and Monomeric Group 1 mGluRs: Relevance to Schizophrenia Pathogenesis and Treatment. Sci. Rep. 2016;6:34391. doi: 10.1038/srep34391. PubMed DOI PMC
McDonald J.W., Shapiro S.M., Silverstein F.S., Johnston M.V. Role of Glutamate Receptor-Mediated Excitotoxicity in Bilirubin-Induced Brain Injury in the Gunn Rat Model. Exp. Neurol. 1998;150:21–29. doi: 10.1006/exnr.1997.6762. PubMed DOI
Wu C., Jin Y., Cui Y., Zhu Y., Yin S., Li C. Effects of Bilirubin on the Development and Electrical Activity of Neural Circuits. Front. Cell. Neurosci. 2023;17 doi: 10.3389/fncel.2023.1136250. PubMed DOI PMC
Wusthoff C.J., Loe I.M. Impact of Bilirubin-Induced Neurologic Dysfunction on Neurodevelopmental Outcomes. Semin. Fetal. Neonatal Med. 2015;20:52–57. doi: 10.1016/j.siny.2014.12.003. PubMed DOI PMC
Antonelli T., Ferraro L., Fuxe K., Finetti S., Fournier J., Tanganelli S., De Mattei M., Tomasini M.C. Neurotensin Enhances Endogenous Extracellular Glutamate Levels in Primary Cultures of Rat Cortical Neurons: Involvement of Neurotensin Receptor in NMDA Induced Excitotoxicity. Cereb. Cortex. 2004;14:466–473. doi: 10.1093/cercor/bhh008. PubMed DOI
Antonelli T., Fuxe K., Tomasini M.C., Mazzoni E., Agnati L.F., Tanganelli S., Ferraro L. Neurotensin Receptor Mechanisms and Its Modulation of Glutamate Transmission in the Brain: Relevance for Neurodegenerative Diseases and Their Treatment. Prog. Neurobiol. 2007;83:92–109. doi: 10.1016/j.pneurobio.2007.06.006. PubMed DOI
Boules M., Li Z., Smith K., Fredrickson P., Richelson E. Diverse Roles of Neurotensin Agonists in the Central Nervous System. Front. Endocrinol. 2013;4 doi: 10.3389/fendo.2013.00036. PubMed DOI PMC
Chen L., Yung K.K.L., Yung W.H. Neurotensin Selectively Facilitates Glutamatergic Transmission in Globus Pallidus. Neuroscience. 2006;141:1871–1878. doi: 10.1016/j.neuroscience.2006.05.049. PubMed DOI
Kato H.E., Zhang Y., Hu H., Suomivuori C.-M., Kadji F.M.N., Aoki J., Krishna Kumar K., Fonseca R., Hilger D., Huang W., et al. Conformational Transitions of a Neurotensin Receptor 1–Gi1 Complex. Nature. 2019;572:80–85. doi: 10.1038/s41586-019-1337-6. PubMed DOI PMC
Li S., Geiger J.D., Lei S. Neurotensin Enhances GABAergic Activity in Rat Hippocampus CA1 Region by Modulating L-Type Calcium Channels. J. Neurophysiol. 2008;99:2134–2143. doi: 10.1152/jn.00890.2007. PubMed DOI
Ogawa W.N., Baptista V., Aguiar J.F., Varanda W.A. Neurotensin Modulates Synaptic Transmission in the Nucleus of the Solitary Tract of the Rat. Neuroscience. 2005;130:309–315. doi: 10.1016/j.neuroscience.2004.09.019. PubMed DOI
St-Gelais F., Jomphe C., Trudeau L.-É. The Role of Neurotensin in Central Nervous System Pathophysiology: What Is the Evidence? J. Psychiatry Neurosci. 2006;31:229–245. PubMed PMC
Woodworth H.L., Batchelor H.M., Beekly B.G., Bugescu R., Brown J.A., Kurt G., Fuller P.M., Leinninger G.M. Neurotensin Receptor-1 Identifies a Subset of Ventral Tegmental Dopamine Neurons That Coordinates Energy Balance. Cell Rep. 2017;20:1881–1892. doi: 10.1016/j.celrep.2017.08.001. PubMed DOI PMC
Xiao Z., Cilz N.I., Kurada L., Hu B., Yang C., Wada E., Combs C.K., Porter J.E., Lesage F., Lei S. Activation of Neurotensin Receptor 1 Facilitates Neuronal Excitability and Spatial Learning and Memory in the Entorhinal Cortex: Beneficial Actions in an Alzheimer’s Disease Model. J. Neurosci. 2014;34:7027–7042. doi: 10.1523/JNEUROSCI.0408-14.2014. PubMed DOI PMC
Decourt B., Bouleau Y., Dulon D., Hafidi A. Identification of Differentially Expressed Genes in the Developing Mouse Inferior Colliculus. Dev. Brain Res. 2005;159:29–35. doi: 10.1016/j.devbrainres.2005.06.010. PubMed DOI
Fernández-Calle R., Vicente-Rodríguez M., Gramage E., Pita J., Pérez-García C., Ferrer-Alcón M., Uribarri M., Ramos M.P., Herradón G. Pleiotrophin Regulates Microglia-Mediated Neuroinflammation. J. Neuroinflammation. 2017;14:46. doi: 10.1186/s12974-017-0823-8. PubMed DOI PMC
González-Castillo C., Ortuño-Sahagún D., Guzmán-Brambila C., Pallàs M., Rojas-Mayorquín A.E. Pleiotrophin as a Central Nervous System Neuromodulator, Evidences from the Hippocampus. Front. Cell. Neurosci. 2015;8 doi: 10.3389/fncel.2014.00443. PubMed DOI PMC
Wanaka A., Carroll S.L., Milbrandt J. Developmentally Regulated Expression of Pleiotrophin, a Novel Heparin Binding Growth Factor, in the Nervous System of the Rat. Dev. Brain Res. 1993;72:133–144. doi: 10.1016/0165-3806(93)90166-8. PubMed DOI
Eckert A., Schmitt K., Götz J. Mitochondrial Dysfunction - the Beginning of the End in Alzheimer’s Disease? Separate and Synergistic Modes of Tau and Amyloid-β Toxicity. Alzheimers Res. Ther. 2011;3:15. doi: 10.1186/alzrt74. PubMed DOI PMC
Foti S.C., Hargreaves I., Carrington S., Kiely A.P., Houlden H., Holton J.L. Cerebral Mitochondrial Electron Transport Chain Dysfunction in Multiple System Atrophy and Parkinson’s Disease. Sci. Rep. 2019;9:6559. doi: 10.1038/s41598-019-42902-7. PubMed DOI PMC
Knowlton W.M., Hubert T., Wu Z., Chisholm A.D., Jin Y. A Select Subset of Electron Transport Chain Genes Associated with Optic Atrophy Link Mitochondria to Axon Regeneration in Caenorhabditis Elegans. Front. Neurosci. 2017;11 doi: 10.3389/fnins.2017.00263. PubMed DOI PMC
Keino H., Sato H., Semba R., Aono S., Aoki E., Kashiwamata S. Mode of Prevention by Phototherapy of Cerebellar Hypoplasia in a New Sprague-Dawley Strain of Jaundiced Gunn Rats. Pediatr. Neurosurg. 2008;12:145–150. doi: 10.1159/000120237. PubMed DOI
Stansberg C., Ersland K.M., van der Valk P., Steen V.M. Gene Expression in the Rat Brain: High Similarity but Unique Differences between Frontomedial-, Temporal- and Occipital Cortex. BMC Neurosci. 2011;12:15. doi: 10.1186/1471-2202-12-15. PubMed DOI PMC
Davis D.N., Strong M.D., Chambers E., Hart M.D., Bettaieb A., Clarke S.L., Smith B.J., Stoecker B.J., Lucas E.A., Lin D., et al. A Role for Zinc Transporter Gene SLC39A12 in the Nervous System and Beyond. Gene. 2021;799:145824. doi: 10.1016/j.gene.2021.145824. PubMed DOI PMC
Scarr E., Udawela M., Greenough M.A., Neo J., Suk Seo M., Money T.T., Upadhyay A., Bush A.I., Everall I.P., Thomas E.A., et al. Increased Cortical Expression of the Zinc Transporter SLC39A12 Suggests a Breakdown in Zinc Cellular Homeostasis as Part of the Pathophysiology of Schizophrenia. Npj Schizophr. 2016;2:1–7. doi: 10.1038/npjschz.2016.2. PubMed DOI PMC
Bly M. Examination of the Zinc Transporter Gene, SLC39A12. Schizophr. Res. 2006;81:321–322. doi: 10.1016/j.schres.2005.07.039. PubMed DOI
Gambaro S.E., Robert M.C., Tiribelli C., Gazzin S. Role of Brain Cytochrome P450 Mono-Oxygenases in Bilirubin Oxidation-Specific Induction and Activity. Arch. Toxicol. 2016;90:279–290. doi: 10.1007/s00204-014-1394-4. PubMed DOI
Bianco A., Dvořák A., Capková N., Gironde C., Tiribelli C., Furger C., Vitek L., Bellarosa C. The Extent of Intracellular Accumulation of Bilirubin Determines Its Anti- or Pro-Oxidant Effect. Int. J. Mol. Sci. 2020;21:8101. doi: 10.3390/ijms21218101. PubMed DOI PMC
Dal Ben M., Bottin C., Zanconati F., Tiribelli C., Gazzin S. Evaluation of Region Selective Bilirubin-Induced Brain Damage as a Basis for a Pharmacological Treatment. Sci. Rep. 2017;7:41032. doi: 10.1038/srep41032. PubMed DOI PMC
Falcão A.S., Silva R.F.M., Vaz A.R., Silva S.L., Fernandes A., Brites D. Cross-Talk Between Neurons and Astrocytes in Response to Bilirubin: Early Beneficial Effects. Neurochem. Res. 2013;38:644–659. doi: 10.1007/s11064-012-0963-2. PubMed DOI
Genc S., Genc K., Kumral A., Baskin H., Ozkan H. Bilirubin Is Cytotoxic to Rat Oligodendrocytes in Vitro. Brain Res. 2003;985:135–141. doi: 10.1016/S0006-8993(03)03037-3. PubMed DOI
Qaisiya M., Brischetto C., Jašprová J., Vitek L., Tiribelli C., Bellarosa C. Bilirubin-Induced ER Stress Contributes to the Inflammatory Response and Apoptosis in Neuronal Cells. Arch. Toxicol. 2017;91:1847–1858. doi: 10.1007/s00204-016-1835-3. PubMed DOI
Rodrigues C.M.P., Solá S., Brito M.A., Brites D., Moura J.J.G. Bilirubin Directly Disrupts Membrane Lipid Polarity and Fluidity, Protein Order, and Redox Status in Rat Mitochondria. J. Hepatol. 2002;36:335–341. doi: 10.1016/S0168-8278(01)00279-3. PubMed DOI
Silva R., Mata L.R., Gulbenkian S., Brito M.A., Tiribelli C., Brites D. Inhibition of Glutamate Uptake by Unconjugated Bilirubin in Cultured Cortical Rat Astrocytes: Role of Concentration and pH. Biochem. Biophys. Res. Commun. 1999;265:67–72. doi: 10.1006/bbrc.1999.1646. PubMed DOI
Chang F.-Y., Lee C.-C., Huang C.-C., Hsu K.-S. Unconjugated Bilirubin Exposure Impairs Hippocampal Long-Term Synaptic Plasticity. PLoS ONE. 2009;4:e5876. doi: 10.1371/journal.pone.0005876. PubMed DOI PMC
Yang L., Wu D., Wang B., Bu X., Zhu J., Tang J. The Effects of Hyperbilirubinaemia on Synaptic Plasticity in the Dentate Gyrus Region of the Rat Hippocampus in Vivo. Arch. Med. Sci. 2019;16:200–204. doi: 10.5114/aoms.2019.88625. PubMed DOI PMC
Zhang L., Liu W., Tanswell A.K., Luo X. The Effects of Bilirubin on Evoked Potentials and Long-Term Potentiation in Rat Hippocampus In Vivo. Pediatr. Res. 2003;53:939–944. doi: 10.1203/01.PDR.0000061563.63230.86. PubMed DOI
Liang M., Yin X.-L., Shi H.-B., Li C.-Y., Li X.-Y., Song N.-Y., Shi H.-S., Zhao Y., Wang L.-Y., Yin S.-K. Bilirubin Augments Ca2+ Load of Developing Bushy Neurons by Targeting Specific Subtype of Voltage-Gated Calcium Channels. Sci. Rep. 2017;7:431. doi: 10.1038/s41598-017-00275-9. PubMed DOI PMC
Rauti R., Qaisiya M., Tiribelli C., Ballerini L., Bellarosa C. Bilirubin Disrupts Calcium Homeostasis in Neonatal Hippocampal Neurons: A New Pathway of Neurotoxicity. Arch. Toxicol. 2020;94:845–855. doi: 10.1007/s00204-020-02659-9. PubMed DOI
Shi H.-S., Lai K., Yin X.-L., Liang M., Ye H.-B., Shi H.-B., Wang L.-Y., Yin S.-K. Ca2+-Dependent Recruitment of Voltage-Gated Sodium Channels Underlies Bilirubin-Induced Overexcitation and Neurotoxicity. Cell Death Dis. 2019;10:1–15. doi: 10.1038/s41419-019-1979-1. PubMed DOI PMC
Asad S.F., Singh S., Ahmad A., Hadi S.M. Bilirubin/Biliverdin–Cu(II) Induced DNA Breakage; Reaction Mechanism and Biological Significance. Toxicol. Lett. 2002;131:181–189. doi: 10.1016/S0378-4274(02)00031-0. PubMed DOI
Johnson C.H., Patterson A.D., Idle J.R., Gonzalez F.J. Xenobiotic Metabolomics: Major Impact on the Metabolome. Annu. Rev. Pharmacol. Toxicol. 2012;52:37–56. doi: 10.1146/annurev-pharmtox-010611-134748. PubMed DOI PMC
Ikeda Y., Hamano H., Satoh A., Horinouchi Y., Izawa-Ishizawa Y., Kihira Y., Ishizawa K., Aihara K., Tsuchiya K., Tamaki T. Bilirubin Exerts Pro-Angiogenic Property through Akt-eNOS-Dependent Pathway. Hypertens. Res. 2015;38:733–740. doi: 10.1038/hr.2015.74. PubMed DOI
Ruchaud S., Korfali N., Villa P., Kottke T.J., Dingwall C., Kaufmann S.H., Earnshaw W.C. Caspase-6 Gene Disruption Reveals a Requirement for Lamin A Cleavage in Apoptotic Chromatin Condensation. EMBO J. 2002;21:1967–1977. doi: 10.1093/emboj/21.8.1967. PubMed DOI PMC
Dehkordi M.H., Munn R.G.K., Fearnhead H.O. Non-Canonical Roles of Apoptotic Caspases in the Nervous System. Front. Cell Dev. Biol. 2022;10 doi: 10.3389/fcell.2022.840023. PubMed DOI PMC
Diamond I., Schmid R. Experimental Bilirubin Encephalopathy. The Mode of Entry of Bilirubin-14C into the Central Nervous System. J. Clin. Investig. 1966;45:678–689. doi: 10.1172/JCI105383. PubMed DOI PMC
Kasirer Y., Kaplan M., Hammerman C. Kernicterus on the Spectrum. NeoReviews. 2023;24:e329–e342. doi: 10.1542/neo.24-6-e329. PubMed DOI
Lunsing R.J. Subtle Bilirubin-Induced Neurodevelopmental Dysfunction (BIND) in the Term and Late Preterm Infant: Does It Exist? Semin. Perinatol. 2014;38:465–471. doi: 10.1053/j.semperi.2014.08.009. PubMed DOI
Aono S., Sato H., Semba R., Kashiwamata S., Kato K., Eng L.F. Comparative Study of Glial Marker Proteins in the Hypoplastic Cerebellum of Jaundiced Gunn Rats. J. Neurochem. 1988;50:717–721. doi: 10.1111/j.1471-4159.1988.tb02973.x. PubMed DOI
Bortolussi G., Baj G., Vodret S., Viviani G., Bittolo T., Muro A.F. Age-Dependent Pattern of Cerebellar Susceptibility to Bilirubin Neurotoxicity in Vivo in Mice. Dis. Model. Mech. 2014;7:1057–1068. doi: 10.1242/dmm.016535. PubMed DOI PMC
Yamamura H., Takagishi Y. Cerebellar Hypoplasia in the Hyperbilirubinemic Gunn Rat: Morphological Aspects. Nagoya J. Med. Sci. 1993;55:11–21. PubMed
Palmela I. Histological Findings in the Kernicterus-Associated Vulnerable Brain Regions Are Linked to Neurodegeneration, Alterations in Astrocyte and Pericyte Distribution, and Vascular Modifications. Int. J. Pathol. Clin. Res. 2015;1 doi: 10.23937/2469-5807/1510003. DOI
Barateiro A., Domingues H.S., Fernandes A., Relvas J.B., Brites D. Rat Cerebellar Slice Cultures Exposed to Bilirubin Evidence Reactive Gliosis, Excitotoxicity and Impaired Myelinogenesis That Is Prevented by AMPA and TNF-α Inhibitors. Mol. Neurobiol. 2014;49:424–439. doi: 10.1007/s12035-013-8530-7. PubMed DOI
Barateiro A., Chen S., Yueh M.-F., Fernandes A., Domingues H.S., Relvas J., Barbier O., Nguyen N., Tukey R.H., Brites D. Reduced Myelination and Increased Glia Reactivity Resulting from Severe Neonatal Hyperbilirubinemia. Mol. Pharmacol. 2016;89:84–93. doi: 10.1124/mol.115.098228. PubMed DOI PMC
Fernandes A., Silva R.F.M., Falcão A.S., Brito M.A., Brites D. Cytokine Production, Glutamate Release and Cell Death in Rat Cultured Astrocytes Treated with Unconjugated Bilirubin and LPS. J. Neuroimmunol. 2004;153:64–75. doi: 10.1016/j.jneuroim.2004.04.007. PubMed DOI
Silva R.F.M., Rodrigues C.M.P., Brites D. Rat Cultured Neuronal and Glial Cells Respond Differently to Toxicity of Unconjugated Bilirubin. Pediatr. Res. 2002;51:535–541. doi: 10.1203/00006450-200204000-00022. PubMed DOI
Vodret S., Bortolussi G., Jašprová J., Vitek L., Muro A.F. Inflammatory Signature of Cerebellar Neurodegeneration during Neonatal Hyperbilirubinemia in Ugt1-/-Mouse Model. J. Neuroinflammation. 2017;14:64. doi: 10.1186/s12974-017-0838-1. PubMed DOI PMC
Rhyu I.J. Bergman Glial Cell Morphology under the High Voltage Electron Microscope. Appl. Microsc. 2019;49:5. doi: 10.1186/s42649-019-0007-3. PubMed DOI PMC
Dani C., Pratesi S., Ilari A., Lana D., Giovannini M.G., Nosi D., Buonvicino D., Landucci E., Bani D., Mannaioni G., et al. Neurotoxicity of Unconjugated Bilirubin in Mature and Immature Rat Organotypic Hippocampal Slice Cultures. Neonatology. 2019;115:217–225. doi: 10.1159/000494101. PubMed DOI
Falcão A.S., Fernandes A., Brito M.A., Silva R.F.M., Brites D. Bilirubin-Induced Immunostimulant Effects and Toxicity Vary with Neural Cell Type and Maturation State. Acta Neuropathol. 2006;112:95–105. doi: 10.1007/s00401-006-0078-4. PubMed DOI
Silva R.F.M., Mata L.M., Gulbenkian S., Brites D. Endocytosis in Rat Cultured Astrocytes Is Inhibited by Unconjugated Bilirubin. Neurochem. Res. 2001;26:793–800. doi: 10.1023/A:1011608017870. PubMed DOI
Sturrock R.R., Jew J.Y. A Quantitative Histological Study of Changes in Neurons and Glia in the Gunn Rat Brain. Neuropathol. Appl. Neurobiol. 1978;4:209–223. doi: 10.1111/j.1365-2990.1978.tb00538.x. PubMed DOI
Yamada K., Watanabe M. Cytodifferentiation of Bergmann Glia and Its Relationship with Purkinje Cells. Anat. Sci. Int. 2002;77:94–108. doi: 10.1046/j.0022-7722.2002.00021.x. PubMed DOI
Cerrato V. Cerebellar Astrocytes: Much More Than Passive Bystanders In Ataxia Pathophysiology. J. Clin. Med. 2020;9:757. doi: 10.3390/jcm9030757. PubMed DOI PMC
Kim J.H., Lukowicz A., Qu W., Johnson A., Cvetanovic M. Astroglia Contribute to the Pathogenesis of Spinocerebellar Ataxia Type 1 (SCA1) in a Biphasic, Stage-of-Disease Specific Manner. Glia. 2018;66:1972–1987. doi: 10.1002/glia.23451. PubMed DOI PMC
Roger C., Koziel V., Vert P., Nehlig A. Mapping of the Consequences of Bilirubin Exposure in the Immature Rat: Local Cerebral Metabolic Rates for Glucose during Moderate and Severe Hyperbilirubinemia. Early Hum. Dev. 1995;43:133–144. doi: 10.1016/0378-3782(95)01668-6. PubMed DOI
Llido J.P., Jayanti S., Tiribelli C., Gazzin S. Bilirubin and Redox Stress in Age-Related Brain Diseases. Antioxidants. 2023;12:1525. doi: 10.3390/antiox12081525. PubMed DOI PMC
Zhang S., Fan Y., Zheng B., Wang Y., Miao C., Su Y., Li K., E Y., Wang X., He X., et al. Bilirubin Improves Gap Junction to Alleviate Doxorubicin-Induced Cardiotoxicity by Regulating AMPK-Axl-SOCS3-Cx43 Axis. Front. Pharmacol. 2022;13 doi: 10.3389/fphar.2022.828890. PubMed DOI PMC
Zhang Y., Chen Y., Chen X., Gao Y., Luo J., Lu S., Li Q., Li P., Bai M., Jiang T., et al. Unconjugated Bilirubin Promotes Uric Acid Restoration by Activating Hepatic AMPK Pathway. Free Radic. Biol. Med. 2024;224:644–659. doi: 10.1016/j.freeradbiomed.2024.09.023. PubMed DOI
Grojean S., Koziel V., Vert P., Daval J.-L. Bilirubin Induces Apoptosis via Activation of NMDA Receptors in Developing Rat Brain Neurons. Exp. Neurol. 2000;166:334–341. doi: 10.1006/exnr.2000.7518. PubMed DOI
Hansen T.W.R. Bilirubin Oxidation in Brain. Mol. Genet. Metab. 2000;71:411–417. doi: 10.1006/mgme.2000.3028. PubMed DOI
Zetterström R., Ernster L. Bilirubin, an Uncoupler of Oxidative Phosphorylation in Isolated Mitochondria. Nature. 1956;178:1335–1337. doi: 10.1038/1781335a0. PubMed DOI
Riordan S.M., Bittel D.C., Le Pichon J.-B., Gazzin S., Tiribelli C., Watchko J.F., Wennberg R.P., Shapiro S.M. A Hypothesis for Using Pathway Genetic Load Analysis for Understanding Complex Outcomes in Bilirubin Encephalopathy. Front. Neurosci. 2016;10:376. doi: 10.3389/fnins.2016.00376. PubMed DOI PMC
Watchko J.F., Lin Z., Clark R.H., Kelleher A.S., Walker M.W., Spitzer A.R., for the Pediatrix Hyperbilirubinemia Study Group Complex Multifactorial Nature of Significant Hyperbilirubinemia in Neonates. Pediatrics. 2009;124:e868–e877. doi: 10.1542/peds.2009-0460. PubMed DOI
Gunn C.H. HEREDITARY ACHOLURIC JAUNDICE: In a New Mutant Strain of Rats. J. Hered. 1938;29:137–139. doi: 10.1093/oxfordjournals.jhered.a104478. DOI
Stobie P.E., Hansen C.T., Hailey J.R., Levine R.L. A Difference in Mortality between Two Strains of Jaundiced Rats. Pediatrics. 1991;87:88–93. doi: 10.1542/peds.87.1.88. PubMed DOI
Amin S.B., Smith T., Timler G. Developmental Influence of Unconjugated Hyperbilirubinemia and Neurobehavioral Disorders. Pediatr. Res. 2019;85:191–197. doi: 10.1038/s41390-018-0216-4. PubMed DOI
Brito M.A., Pereira P., Barroso C., Aronica E., Brites D. New Autopsy Findings in Different Brain Regions of a Preterm Neonate With Kernicterus: Neurovascular Alterations and Up-Regulation of Efflux Transporters. Pediatr. Neurol. 2013;49:431–438. doi: 10.1016/j.pediatrneurol.2013.08.020. PubMed DOI
Gazzin S., Jayanti S., Tiribelli C. Models of Bilirubin Neurological Damage: Lessons Learned and New Challenges. Pediatr. Res. 2023;93:1838–1845. doi: 10.1038/s41390-022-02351-x. PubMed DOI
Hu W., Cheng X., Ye X., Zhao L., Huang Y., Zhu H., Yan Z., Wang X., Wang X., Bai G., et al. Ex Vivo 1H Nuclear Magnetic Resonance Spectroscopy Reveals Systematic Alterations in Cerebral Metabolites as the Key Pathogenetic Mechanism of Bilirubin Encephalopathy. Mol. Brain. 2014;7:87. doi: 10.1186/s13041-014-0087-5. PubMed DOI PMC
Vaz A.R., Silva S.L., Barateiro A., Falcão A.S., Fernandes A., Brito M.A., Brites D. Selective Vulnerability of Rat Brain Regions to Unconjugated Bilirubin. Mol. Cell. Neurosci. 2011;48:82–93. doi: 10.1016/j.mcn.2011.06.008. PubMed DOI
Von Bartheld C.S., Bahney J., Herculano-Houzel S. The Search for True Numbers of Neurons and Glial Cells in the Human Brain: A Review of 150 Years of Cell Counting. J. Comp. Neurol. 2016;524:3865–3895. doi: 10.1002/cne.24040. PubMed DOI PMC
Mahmoud S., Gharagozloo M., Simard C., Gris D. Astrocytes Maintain Glutamate Homeostasis in the CNS by Controlling the Balance between Glutamate Uptake and Release. Cells. 2019;8:184. doi: 10.3390/cells8020184. PubMed DOI PMC
Silva S.L., Vaz A.R., Diógenes M.J., van Rooijen N., Sebastião A.M., Fernandes A., Silva R.F.M., Brites D. Neuritic Growth Impairment and Cell Death by Unconjugated Bilirubin Is Mediated by NO and Glutamate, Modulated by Microglia, and Prevented by Glycoursodeoxycholic Acid and Interleukin-10. Neuropharmacology. 2012;62:2398–2408. doi: 10.1016/j.neuropharm.2012.02.002. PubMed DOI
Oakden W.K., Moore A.M., Blaser S., Noseworthy M.D. 1H MR Spectroscopic Characteristics of Kernicterus: A Possible Metabolic Signature. AJNR Am. J. Neuroradiol. 2005;26:1571–1574. PubMed PMC
Grojean S., Lievre V., Koziel V., Vert P., Daval J.-L. Bilirubin Exerts Additional Toxic Effects in Hypoxic Cultured Neurons from the Developing Rat Brain by the Recruitment of Glutamate Neurotoxicity. Pediatr. Res. 2001;49:507–513. doi: 10.1203/00006450-200104000-00012. PubMed DOI
Hoffman D.J., Zanelli S.A., Kubin J., Mishra O.P., Delivoria-Papadopoulos M. The in Vivo Effect of Bilirubin on the N-Methyl-D-Aspartate Receptor/Ion Channel Complex in the Brains of Newborn Piglets. Pediatr. Res. 1996;40:804–808. doi: 10.1203/00006450-199612000-00005. PubMed DOI
Shapiro S.M., Sombati S., Geiger A., Rice A.C. NMDA Channel Antagonist MK-801 Does Not Protect against Bilirubin Neurotoxicity. Biol. Neonate. 2007;92:248–257. doi: 10.1159/000103743. PubMed DOI
Warr O., Mort D., Attwell D. Bilirubin Does Not Modulate Ionotropic Glutamate Receptors or Glutamate Transporters. Brain Res. 2000;879:13–16. doi: 10.1016/S0006-8993(00)02676-7. PubMed DOI
Gazzin S., Vitek L., Watchko J., Shapiro S.M., Tiribelli C. A Novel Perspective on the Biology of Bilirubin in Health and Disease. Trends Mol. Med. 2016;22:758–768. doi: 10.1016/j.molmed.2016.07.004. PubMed DOI
Huang H., Li S., Zhang Y., He C., Hua Z. Microglial Priming in Bilirubin-Induced Neurotoxicity. Neurotox. Res. 2023;41:338–348. doi: 10.1007/s12640-023-00643-6. PubMed DOI
Schiavon E., Smalley J.L., Newton S., Greig N.H., Forsythe I.D. Neuroinflammation and ER-Stress Are Key Mechanisms of Acute Bilirubin Toxicity and Hearing Loss in a Mouse Model. PLoS ONE. 2018;13:e0201022. doi: 10.1371/journal.pone.0201022. PubMed DOI PMC
Rowley N.M., Madsen K.K., Schousboe A., Steve White H. Glutamate and GABA Synthesis, Release, Transport and Metabolism as Targets for Seizure Control. Neurochem. Int. 2012;61:546–558. doi: 10.1016/j.neuint.2012.02.013. PubMed DOI
Li C.-Y., Shi H.-B., Chen Z.-N., Ye H.-B., Song N., Yin S.-K. Protein Kinase A and C Signaling Induces Bilirubin Potentiation of GABA/Glycinergic Synaptic Transmission in Rat Ventral Cochlear Nucleus Neurons. Brain Res. 2010;1348:30–41. doi: 10.1016/j.brainres.2010.06.022. PubMed DOI
Shi H.-B., Kakazu Y., Shibata S., Matsumoto N., Nakagawa T., Komune S. Bilirubin Potentiates Inhibitory Synaptic Transmission in Lateral Superior Olive Neurons of the Rat. Neurosci. Res. 2006;55:161–170. doi: 10.1016/j.neures.2006.02.015. PubMed DOI
Yin X.-L., Liang M., Shi H.-B., Wang L.-Y., Li C.-Y., Yin S.-K. The Role of Gamma-Aminobutyric Acid/Glycinergic Synaptic Transmission in Mediating Bilirubin-Induced Hyperexcitation in Developing Auditory Neurons. Toxicol. Lett. 2016;240:1–9. doi: 10.1016/j.toxlet.2015.10.008. PubMed DOI
Ben-Ari Y., Khazipov R., Leinekugel X., Caillard O., Gaiarsa J.-L. GABAA, NMDA and AMPA Receptors: A Developmentally Regulated ‘ménage à Trois’. Trends Neurosci. 1997;20:523–529. doi: 10.1016/S0166-2236(97)01147-8. PubMed DOI
Wang D.D., Kriegstein A.R. GABA Regulates Excitatory Synapse Formation in the Neocortex via NMDA Receptor Activation. J. Neurosci. 2008;28:5547–5558. doi: 10.1523/JNEUROSCI.5599-07.2008. PubMed DOI PMC
Yamasaki M., Aiba A., Kano M., Watanabe M. mGluR1 Signaling in Cerebellar Purkinje Cells: Subcellular Organization and Involvement in Cerebellar Function and Disease. Neuropharmacology. 2021;194:108629. doi: 10.1016/j.neuropharm.2021.108629. PubMed DOI
Ledonne A., Mercuri N.B. Insights on the Functional Interaction between Group 1 Metabotropic Glutamate Receptors (mGluRI) and ErbB Receptors. Int. J. Mol. Sci. 2020;21:7913. doi: 10.3390/ijms21217913. PubMed DOI PMC
Hansen K.B., Wollmuth L.P., Bowie D., Furukawa H., Menniti F.S., Sobolevsky A.I., Swanson G.T., Swanger S.A., Greger I.H., Nakagawa T., et al. Structure, Function, and Pharmacology of Glutamate Receptor Ion Channelss. Pharmacol. Rev. 2021;73:1469–1658. doi: 10.1124/pharmrev.120.000131. PubMed DOI PMC
Tellios V., Maksoud M.J.E., Xiang Y.-Y., Lu W.-Y. Nitric Oxide Critically Regulates Purkinje Neuron Dendritic Development Through a Metabotropic Glutamate Receptor Type 1–Mediated Mechanism. Cerebellum. 2020;19:510–526. doi: 10.1007/s12311-020-01125-7. PubMed DOI
Tabata T., Araishi K., Hashimoto K., Hashimotodani Y., van der Putten H., Bettler B., Kano M. Ca2+ Activity at GABAB Receptors Constitutively Promotes Metabotropic Glutamate Signaling in the Absence of GABA. Proc. Natl. Acad. Sci. USA. 2004;101:16952–16957. doi: 10.1073/pnas.0405387101. PubMed DOI PMC
Guo C., Rudolph S., Neuwirth M.E., Regehr W.G. Purkinje Cell Outputs Selectively Inhibit a Subset of Unipolar Brush Cells in the Input Layer of the Cerebellar Cortex. eLife. 2021;10:e68802. doi: 10.7554/eLife.68802. PubMed DOI PMC
Loftspring M.C., Johnson H.L., Feng R., Johnson A.J., Clark J.F. Unconjugated Bilirubin Contributes to Early Inflammation and Edema after Intracerebral Hemorrhage. J. Cereb. Blood Flow Metab. 2011;31:1133–1142. doi: 10.1038/jcbfm.2010.203. PubMed DOI PMC
Hirai H. Protein Kinase C in the Cerebellum: Its Significance and Remaining Conundrums. Cerebellum. 2018;17:23–27. doi: 10.1007/s12311-017-0898-x. PubMed DOI
Bellone C., Lüscher C. mGluRs Induce a Long-Term Depression in the Ventral Tegmental Area That Involves a Switch of the Subunit Composition of AMPA Receptors. Eur. J. Neurosci. 2005;21:1280–1288. doi: 10.1111/j.1460-9568.2005.03979.x. PubMed DOI
Faas G.C., Adwanikar H., Gereau R.W., Saggau P. Modulation of Presynaptic Calcium Transients by Metabotropic Glutamate Receptor Activation: A Differential Role in Acute Depression of Synaptic Transmission and Long-Term Depression. J. Neurosci. 2002;22:6885–6890. doi: 10.1523/JNEUROSCI.22-16-06885.2002. PubMed DOI PMC
Downs A.M., Roman K.M., Campbell S.A., Pisani A., Hess E.J., Bonsi P. The Neurobiological Basis for Novel Experimental Therapeutics in Dystonia. Neurobiol. Dis. 2019;130:104526. doi: 10.1016/j.nbd.2019.104526. PubMed DOI PMC
Pagonabarraga J., Tinazzi M., Caccia C., Jost W.H. The Role of Glutamatergic Neurotransmission in the Motor and Non-Motor Symptoms in Parkinson’s Disease: Clinical Cases and a Review of the Literature. J. Clin. Neurosci. 2021;90:178–183. doi: 10.1016/j.jocn.2021.05.056. PubMed DOI
Chowdhury J.R., Kondapalli R., Chowdhury N.R. Gunn Rat: A Model for Inherited Deficiency of Bilirubin Glucuronidation. Adv. Vet. Sci. Comp. Med. 1993;37:149–173. PubMed
elAwady M., Chowdhury J.R., Kesari K., van Es H., Jansen P.L., Lederstein M., Arias I.M., Chowdhury N.R. Mechanism of the Lack of Induction of UDP-Glucuronosyltransferase Activity in Gunn Rats by 3-Methylcholanthrene. Identification of a Truncated Enzyme. J. Biol. Chem. 1990;265:10752–10758. doi: 10.1016/S0021-9258(18)87011-9. PubMed DOI
Bustin S.A., Benes V., Garson J.A., Hellemans J., Huggett J., Kubista M., Mueller R., Nolan T., Pfaffl M.W., Shipley G.L., et al. The MIQE Guidelines: Minimum Information for Publication of Quantitative Real-Time PCR Experiments. Clin. Chem. 2009;55:611–622. doi: 10.1373/clinchem.2008.112797. PubMed DOI
Pfaffl M.W. A New Mathematical Model for Relative Quantification in Real-Time RT–PCR. Nucleic Acids Res. 2001;29:e45. doi: 10.1093/nar/29.9.e45. PubMed DOI PMC
Vandesompele J., De Preter K., Pattyn F., Poppe B., Van Roy N., De Paepe A., Speleman F. Accurate Normalization of Real-Time Quantitative RT-PCR Data by Geometric Averaging of Multiple Internal Control Genes. Genome Biol. 2002;3:research0034.1. doi: 10.1186/gb-2002-3-7-research0034. PubMed DOI PMC
Ehrlich P. Sulfodiazobenzol ein reagens auf bilirubin. Cent. Klinsche Med. 1883;4:721–723.
Ehrlich P. Sulfodiazobenzol als Reagens auf Bilirubin. Z. Für Anal. Chem. 1884;23:275–276. doi: 10.1007/BF01360509. DOI
Doumas B.T., Ard Watson W., Biggs H.G. Albumin Standards and the Measurement of Serum Albumin with Bromcresol Green. Clin. Chim. Acta. 1997;258:21–30. doi: 10.1016/S0009-8981(96)06447-9. PubMed DOI
Jašprová J., Dvořák A., Vecka M., Leníček M., Lacina O., Valášková P., Zapadlo M., Plavka R., Klán P., Vítek L. A Novel Accurate LC-MS/MS Method for Quantitative Determination of Z-Lumirubin. Sci. Rep. 2020;10:4411. doi: 10.1038/s41598-020-61280-z. PubMed DOI PMC
Posit Team Posit. [(accessed on 30 April 2025)]. Available online: https://www.posit.co/
Oyelade J., Isewon I., Oladipupo F., Aromolaran O., Uwoghiren E., Ameh F., Achas M., Adebiyi E. Clustering Algorithms: Their Application to Gene Expression Data. Bioinforma. Biol. Insights. 2016;10:BBI.S38316. doi: 10.4137/BBI.S38316. PubMed DOI PMC