Transcriptomic and Proteomic Changes in the Brain Along with Increasing Phenotypic Severity in a Rat Model of Neonatal Hyperbilirubinemia

. 2025 Jun 28 ; 26 (13) : . [epub] 20250628

Jazyk angličtina Země Švýcarsko Médium electronic

Typ dokumentu časopisecké články

Perzistentní odkaz   https://www.medvik.cz/link/pmid40650037

Grantová podpora
FSE+ 2021/2027 n. 2023/3340 JTR, JPL were founded in part by DOST, in part by an internal grant from FIF. SG, CT, GV: Internal grant FIF. LV, AS and DK were supported by the grant MH CZ-DRO-VFN64165 from the Czech Ministry of Health. AFB was supported by Fondo Sociale Europeo Plus.

Kernicterus spectrum disorder is the permanent and highly disabling neurologic sequel of neonatal exposure to hyperbilirubinemia, presenting, among other symptoms, variable and untreatable motor disabilities. To search for potential biomolecular explanations, we used a Gunn rat colony exhibiting spontaneous hyperbilirubinemia and a large variability of motor deficits on a beam-walking test. Histological and microscopic analyses confirmed worsening damage in the cerebellum (Cll; hypoplasia, increased death of neurons, and disrupted astroglial structures) and parietal motor cortex (hCtx; increased cell sufferance and astrogliosis). Clustering and network analyses of transcriptomic data reveal rearrangement of the physiological expression patterns and signaling pathways associated with bilirubin neurotoxicity. Bilirubin content among hyperbilirubinemic (jj) animals is overlapped, which suggests that the amount of bilirubin challenge does not fully explain the tissue, transcriptomic, proteomic, and neurobehavioral alterations. The expression of nine genes involved in key postnatal brain development processes is permanently altered in a phenotype-dependent manner. Among them, Grm1, a metabotropic glutamatergic receptor involved in glutamate neurotoxicity, is consistently downregulated in both brain regions both at the transcriptomic and proteomic levels. Our results support the role of Grm1 and glutamate as biomolecular markers of ongoing bilirubin neurotoxicity, suggesting the possibility to improve diagnosis by 1H-MR spectroscopy.

Zobrazit více v PubMed

Le Pichon J.-B., Riordan S.M., Watchko J., Shapiro S.M. The Neurological Sequelae of Neonatal Hyperbilirubinemia: Definitions, Diagnosis and Treatment of the Kernicterus Spectrum Disorders (KSDs) Curr. Pediatr. Rev. 2017;13:199–209. doi: 10.2174/1573396313666170815100214. PubMed DOI

Riordan S.M., Shapiro S.M. Review of Bilirubin Neurotoxicity I: Molecular Biology and Neuropathology of Disease. Pediatr. Res. 2020;87:327–331. doi: 10.1038/s41390-019-0608-0. PubMed DOI

Shapiro S.M. Definition of the Clinical Spectrum of Kernicterus and Bilirubin-Induced Neurologic Dysfunction (BIND) J. Perinatol. 2005;25:54–59. doi: 10.1038/sj.jp.7211157. PubMed DOI

Shapiro S.M., Nakamura H. Bilirubin and the Auditory System. J. Perinatol. 2001;21:S52–S55. doi: 10.1038/sj.jp.7210635. PubMed DOI

Watchko J.F., Painter M.J., Panigrahy A. Are the Neuromotor Disabilities of Bilirubin-Induced Neurologic Dysfunction Disorders Related to the Cerebellum and Its Connections? Semin. Fetal. Neonatal Med. 2015;20:47–51. doi: 10.1016/j.siny.2014.12.004. PubMed DOI

Watchko J.F., Maisels M.J. The Enigma of Low Bilirubin Kernicterus in Premature Infants: Why Does It Still Occur, and Is It Preventable? Semin. Perinatol. 2014;38:397–406. doi: 10.1053/j.semperi.2014.08.002. PubMed DOI

Wisnowski J.L., Panigrahy A., Painter M.J., Watchko J.F. Magnetic Resonance Imaging Abnormalities in Advanced Acute Bilirubin Encephalopathy Highlight Dentato-Thalamo-Cortical Pathways. J. Pediatr. 2016;174:260–263. doi: 10.1016/j.jpeds.2016.03.065. PubMed DOI

Diala U.M., Usman F., Appiah D., Hassan L., Ogundele T., Abdullahi F., Satrom K.M., Bakker C.J., Lee B.W., Slusher T.M. Global Prevalence of Severe Neonatal Jaundice among Hospital Admissions: A Systematic Review and Meta-Analysis. J. Clin. Med. 2023;12:3738. doi: 10.3390/jcm12113738. PubMed DOI PMC

ElTatawy S.S., Elmazzahy E.A., El Shennawy A.M., Madani H.A., Abou Youssef H., Iskander I.F. The Spectrum of Bilirubin Neurotoxicity in Term and Near-Term Babies with Hyperbilirubinemia: Does Outcome Improve with Time? Early Hum. Dev. 2020;140:104909. doi: 10.1016/j.earlhumdev.2019.104909. PubMed DOI

Good W.V., Wong R.J., Norcia A.M., Hou C., Cellucci J., McGovern M.Q., Wong-Kee-You A., Acevedo Munares G., Richburg D., Loveridge-easther C., et al. Effect of Bilirubin on Visuocortical Development in Preterm Infants. J. Perinatol. 2025:1–8. doi: 10.1038/s41372-025-02213-4. PubMed DOI

Jayanti S., Ghersi-Egea J.-F., Strazielle N., Tiribelli C., Gazzin S. Severe Neonatal Hyperbilirubinemia and the Brain: The Old but Still Evolving Story. Pediatr. Med. 2021;4 doi: 10.21037/pm-21-5. DOI

Karimzadeh P., Fallahi M., Kazemian M., Taslimi Taleghani N., Nouripour S., Radfar M. Bilirubin Induced Encephalopathy. Iran. J. Child Neurol. 2020;14:7–19. PubMed PMC

Kemper A.R., Newman T.B., Slaughter J.L., Maisels M.J., Watchko J.F., Downs S.M., Grout R.W., Bundy D.G., Stark A.R., Bogen D.L., et al. Clinical Practice Guideline Revision: Management of Hyperbilirubinemia in the Newborn Infant 35 or More Weeks of Gestation. Pediatrics. 2022;150:e2022058859. doi: 10.1542/peds.2022-058859. PubMed DOI

Kumar V., Kumar P., Sundaram V., Munjal S.K., Malhi P., Panda N.K. Childhood Neurodevelopmental Outcomes of Survivors of Acute Bilirubin Encephalopathy: A Retrospective Cohort Study. Early Hum. Dev. 2021;158:105380. doi: 10.1016/j.earlhumdev.2021.105380. PubMed DOI

Qian S., Kumar P., Testai F.D. Bilirubin Encephalopathy. Curr. Neurol. Neurosci. Rep. 2022;22:343–353. doi: 10.1007/s11910-022-01204-8. PubMed DOI

Vidavalur R., Schettler K.F., Dani C., Fouzas S., Mimoso G., Sanchez-Luna M., Bhutani V.K., deLuca D. Trends of Extreme Hyperbilirubinemia Related Infant Mortality in Select European Countries (1990–2019) Pediatr. Res. 2024:1–6. doi: 10.1038/s41390-024-03695-2. PubMed DOI

Shapiro S.M. Chronic Bilirubin Encephalopathy: Diagnosis and Outcome. Semin. Fetal. Neonatal Med. 2010;15:157–163. doi: 10.1016/j.siny.2009.12.004. PubMed DOI

Watchko J.F., Tiribelli C. Bilirubin-Induced Neurologic Damage—Mechanisms and Management Approaches. N. Engl. J. Med. 2013;369:2021–2030. doi: 10.1056/NEJMra1308124. PubMed DOI

Llido J.P., Fioriti E., Pascut D., Giuffrè M., Bottin C., Zanconati F., Tiribelli C., Gazzin S. Bilirubin-Induced Transcriptomic Imprinting in Neonatal Hyperbilirubinemia. Biology. 2023;12:834. doi: 10.3390/biology12060834. PubMed DOI PMC

Gazzin S., Zelenka J., Zdrahalova L., Konickova R., Zabetta C.C., Giraudi P.J., Berengeno A.L., Raseni A., Robert M.C., Vitek L., et al. Bilirubin Accumulation and Cyp mRNA Expression in Selected Brain Regions of Jaundiced Gunn Rat Pups. Pediatr. Res. 2012;71:653–660. doi: 10.1038/pr.2012.23. PubMed DOI

Gazzin S., Dal Ben M., Montrone M., Jayanti S., Lorenzon A., Bramante A., Bottin C., Moretti R., Tiribelli C. Curcumin Prevents Cerebellar Hypoplasia and Restores the Behavior in Hyperbilirubinemic Gunn Rat by a Pleiotropic Effect on the Molecular Effectors of Brain Damage. Int. J. Mol. Sci. 2021;22:299. doi: 10.3390/ijms22010299. PubMed DOI PMC

Grillner S. The Motor Infrastructure: From Ion Channels to Neuronal Networks. Nat. Rev. Neurosci. 2003;4:573–586. doi: 10.1038/nrn1137. PubMed DOI

Robert M.C., Furlan G., Rosso N., Gambaro S.E., Apitsionak F., Vianello E., Tiribelli C., Gazzin S. Alterations in the Cell Cycle in the Cerebellum of Hyperbilirubinemic Gunn Rat: A Possible Link with Apoptosis? PLoS ONE. 2013;8:e79073. doi: 10.1371/journal.pone.0079073. PubMed DOI PMC

Vianello E., Zampieri S., Marcuzzo T., Tordini F., Bottin C., Dardis A., Zanconati F., Tiribelli C., Gazzin S. Histone Acetylation as a New Mechanism for Bilirubin-Induced Encephalopathy in the Gunn Rat. Sci. Rep. 2018;8:13690. doi: 10.1038/s41598-018-32106-w. PubMed DOI PMC

Dityatev A., Seidenbecher C.I., Schachner M. Compartmentalization from the Outside: The Extracellular Matrix and Functional Microdomains in the Brain. Trends Neurosci. 2010;33:503–512. doi: 10.1016/j.tins.2010.08.003. PubMed DOI

Gottschling C., Wegrzyn D., Denecke B., Faissner A. Elimination of the Four Extracellular Matrix Molecules Tenascin-C, Tenascin-R, Brevican and Neurocan Alters the Ratio of Excitatory and Inhibitory Synapses. Sci. Rep. 2019;9:13939. doi: 10.1038/s41598-019-50404-9. PubMed DOI PMC

Mody M., Cao Y., Cui Z., Tay K.-Y., Shyong A., Shimizu E., Pham K., Schultz P., Welsh D., Tsien J.Z. Genome-Wide Gene Expression Profiles of the Developing Mouse Hippocampus. Proc. Natl. Acad. Sci. USA. 2001;98:8862–8867. doi: 10.1073/pnas.141244998. PubMed DOI PMC

Okuda H., Tatsumi K., Morita S., Shibukawa Y., Korekane H., Horii-Hayashi N., Wada Y., Taniguchi N., Wanaka A. Chondroitin Sulfate Proteoglycan Tenascin-R Regulates Glutamate Uptake by Adult Brain Astrocytes*. J. Biol. Chem. 2014;289:2620–2631. doi: 10.1074/jbc.M113.504787. PubMed DOI PMC

Bandeira F., Lent R., Herculano-Houzel S. Changing Numbers of Neuronal and Non-Neuronal Cells Underlie Postnatal Brain Growth in the Rat. Proc. Natl. Acad. Sci. USA. 2009;106:14108–14113. doi: 10.1073/pnas.0804650106. PubMed DOI PMC

Nikolić M., Gardner H.A.R., Tucker K.L. Postnatal Neuronal Apoptosis in the Cerebral Cortex: Physiological and Pathophysiological Mechanisms. Neuroscience. 2013;254:369–378. doi: 10.1016/j.neuroscience.2013.09.035. PubMed DOI

Pfisterer U., Khodosevich K. Neuronal Survival in the Brain: Neuron Type-Specific Mechanisms. Cell Death Dis. 2017;8:e2643. doi: 10.1038/cddis.2017.64. PubMed DOI PMC

Uribe V., Wong B.K.Y., Graham R.K., Cusack C.L., Skotte N.H., Pouladi M.A., Xie Y., Feinberg K., Ou Y., Ouyang Y., et al. Rescue from Excitotoxicity and Axonal Degeneration Accompanied by Age-Dependent Behavioral and Neuroanatomical Alterations in Caspase-6-Deficient Mice. Hum. Mol. Genet. 2012;21:1954–1967. doi: 10.1093/hmg/dds005. PubMed DOI PMC

Iruela-Arispe M.L., Liska D.J., Sage E.H., Bornstein P. Differential Expression of Thrombospondin 1, 2, and 3 during Murine Development. Dev. Dyn. 1993;197:40–56. doi: 10.1002/aja.1001970105. PubMed DOI

Wang S., Hu T., Wang Z., Li N., Zhou L., Liao L., Wang M., Liao L., Wang H., Zeng L., et al. Macroglia-Derived Thrombospondin 2 Regulates Alterations of Presynaptic Proteins of Retinal Neurons Following Elevated Hydrostatic Pressure. PLOS ONE. 2017;12:e0185388. doi: 10.1371/journal.pone.0185388. PubMed DOI PMC

Zhou H.-J., Zhang H.-N., Tang T., Zhong J.-H., Qi Y., Luo J.-K., Lin Y., Yang Q.-D., Li X.-Q. Alteration of Thrombospondin-1 and -2 in Rat Brains Following Experimental Intracerebral Hemorrhage. J. Neurosurg. 2010;113:820–825. doi: 10.3171/2010.1.JNS09637. PubMed DOI

Aelst L.V., D’Souza-Schorey C. Rho GTPases and Signaling Networks. Genes Dev. 1997;11:2295–2322. doi: 10.1101/gad.11.18.2295. PubMed DOI

Foletta V.C., Brown F.D., Scott Young III W. Cloning of Rat ARHGAP4/C1, a RhoGAP Family Member Expressed in the Nervous System That Colocalizes with the Golgi Complex and Microtubules. Mol. Brain Res. 2002;107:65–79. doi: 10.1016/S0169-328X(02)00448-5. PubMed DOI

Luo L. RHO GTPASES in Neuronal Morphogenesis. Nat. Rev. Neurosci. 2000;1:173–180. doi: 10.1038/35044547. PubMed DOI

Nishi M., Takeshima H., Houtani T., Nakagawara K., Noda T., Sugimoto T. RhoN, a Novel Small GTP-Binding Protein Expressed Predominantly in Neurons and Hepatic Stellate Cells. Mol. Brain Res. 1999;67:74–81. doi: 10.1016/S0169-328X(99)00039-X. PubMed DOI

Olenik C., Barth H., Just I., Aktories K., Meyer D.K. Gene Expression of the Small GTP-Binding Proteins RhoA, RhoB, Rac1, and Cdc42 in Adult Rat Brain. Mol. Brain Res. 1997;52:263–269. doi: 10.1016/S0169-328X(97)00270-2. PubMed DOI

Olenik C., Aktories K., Meyer D.K. Differential Expression of the Small GTP-Binding Proteins RhoA, RhoB, Cdc42u and Cdc42b in Developing Rat Neocortex. Mol. Brain Res. 1999;70:9–17. doi: 10.1016/S0169-328X(99)00121-7. PubMed DOI

Vadodaria K., Jessberger S. Maturation and Integration of Adult Born Hippocampal Neurons: Signal Convergence onto Small Rho GTPases. Front. Synaptic Neurosci. 2013;5:4. doi: 10.3389/fnsyn.2013.00004. PubMed DOI PMC

Vogt D.L., Gray C.D., Young W.S., Orellana S.A., Malouf A.T. ARHGAP4 Is a Novel RhoGAP That Mediates Inhibition of Cell Motility and Axon Outgrowth. Mol. Cell. Neurosci. 2007;36:332–342. doi: 10.1016/j.mcn.2007.07.004. PubMed DOI PMC

Gregorio I., Braghetta P., Bonaldo P., Cescon M. Collagen VI in Healthy and Diseased Nervous System. Dis. Model. Mech. 2018;11:dmm032946. doi: 10.1242/dmm.032946. PubMed DOI PMC

Moeendarbary E., Weber I.P., Sheridan G.K., Koser D.E., Soleman S., Haenzi B., Bradbury E.J., Fawcett J., Franze K. The Soft Mechanical Signature of Glial Scars in the Central Nervous System. Nat. Commun. 2017;8:14787. doi: 10.1038/ncomms14787. PubMed DOI PMC

Miller J.A., Nathanson J., Franjic D., Shim S., Dalley R.A., Shapouri S., Smith K.A., Sunkin S.M., Bernard A., Bennett J.L., et al. Conserved Molecular Signatures of Neurogenesis in the Hippocampal Subgranular Zone of Rodents and Primates. Development. 2013;140:4633–4644. doi: 10.1242/dev.097212. PubMed DOI PMC

Urbán N., Guillemot F. Neurogenesis in the Embryonic and Adult Brain: Same Regulators, Different Roles. Front. Cell. Neurosci. 2014;8:396. doi: 10.3389/fncel.2014.00396. PubMed DOI PMC

Cho Y., Gong T.-W.L., Stöver T., Lomax M.I., Altschuler R.A. Gene Expression Profiles of the Rat Cochlea, Cochlear Nucleus, and Inferior Colliculus. J. Assoc. Res. Otolaryngol. 2002;3:54–67. doi: 10.1007/s101620010042. PubMed DOI PMC

Schubert D., Martens G.J.M., Kolk S.M. Molecular Underpinnings of Prefrontal Cortex Development in Rodents Provide Insights into the Etiology of Neurodevelopmental Disorders. Mol. Psychiatry. 2015;20:795–809. doi: 10.1038/mp.2014.147. PubMed DOI PMC

Amin S.B., Smith T., Wang H. Is Neonatal Jaundice Associated with Autism Spectrum Disorders: A Systematic Review. J. Autism Dev. Disord. 2011;41:1455–1463. doi: 10.1007/s10803-010-1169-6. PubMed DOI PMC

Ayoub M.A., Angelicheva D., Vile D., Chandler D., Morar B., Cavanaugh J.A., Visscher P.M., Jablensky A., Pfleger K.D.G., Kalaydjieva L. Deleterious GRM1 Mutations in Schizophrenia. PLoS ONE. 2012;7:e32849. doi: 10.1371/journal.pone.0032849. PubMed DOI PMC

Blacker C.J., Lewis C.P., Frye M.A., Veldic M. Metabotropic Glutamate Receptors as Emerging Research Targets in Bipolar Disorder. Psychiatry Res. 2017;257:327–337. doi: 10.1016/j.psychres.2017.07.059. PubMed DOI

Cho H.P., Garcia-Barrantes P.M., Brogan J.T., Hopkins C.R., Niswender C.M., Rodriguez A.L., Venable D.F., Morrison R.D., Bubser M., Daniels J.S., et al. Chemical Modulation of Mutant mGlu1 Receptors Derived from Deleterious GRM1 Mutations Found in Schizophrenics. ACS Chem. Biol. 2014;9:2334–2346. doi: 10.1021/cb500560h. PubMed DOI PMC

De Rosa A., Fontana A., Nuzzo T., Garofalo M., Di Maio A., Punzo D., Copetti M., Bertolino A., Errico F., Rampino A., et al. Machine Learning Algorithm Unveils Glutamatergic Alterations in the Post-Mortem Schizophrenia Brain. Schizophrenia. 2022;8:8. doi: 10.1038/s41537-022-00231-1. PubMed DOI PMC

Gama Marques J., Arantes-Gonçalves F. A Perspective on a Possible Relation Between the Psychopathology of the Schizophrenia/Schizoaffective Spectrum and Unconjugated Bilirubin: A Longitudinal Protocol Study. Front. Psychiatry. 2018;9:146. doi: 10.3389/fpsyt.2018.00146. PubMed DOI PMC

Gazzin S., Bellarosa C., Tiribelli C. Molecular Events in Brain Bilirubin Toxicity Revisited. Pediatr. Res. 2024;95:1734–1740. doi: 10.1038/s41390-024-03084-9. PubMed DOI

Hagihara H., Ohira K., Toyama K., Miyakawa T. Expression of the AMPA Receptor Subunits GluR1 and GluR2 Is Associated with Granule Cell Maturation in the Dentate Gyrus. Front. Neurosci. 2011;5:100. doi: 10.3389/fnins.2011.00100. PubMed DOI PMC

Hayashida M., Miyaoka T., Tsuchie K., Araki T., Izuhara M., Miura S., Kanayama M., Ohtsuki K., Nagahama M., Azis I.A., et al. Parvalbumin-Positive GABAergic Interneurons Deficit in the Hippocampus in Gunn Rats: A Possible Hyperbilirubinemia-Induced Animal Model of Schizophrenia. Heliyon. 2019;5:e02037. doi: 10.1016/j.heliyon.2019.e02037. PubMed DOI PMC

Hokkanen L., Launes J., Michelsson K. Adult Neurobehavioral Outcome of Hyperbilirubinemia in Full Term Neonates—A 30 Year Prospective Follow-up Study. PeerJ. 2014;2:e294. doi: 10.7717/peerj.294. PubMed DOI PMC

Holt A.G., Asako M., Lomax C.A., MacDonald J.W., Tong L., Lomax M.I., Altschuler R.A. Deafness-Related Plasticity in the Inferior Colliculus: Gene Expression Profiling Following Removal of Peripheral Activity. J. Neurochem. 2005;93:1069–1086. doi: 10.1111/j.1471-4159.2005.03090.x. PubMed DOI

Liaury K., Miyaoka T., Tsumori T., Furuya M., Wake R., Ieda M., Tsuchie K., Taki M., Ishihara K., Tanra A.J., et al. Morphological Features of Microglial Cells in the Hippocampal Dentate Gyrus of Gunn Rat: A Possible Schizophrenia Animal Model. J. Neuroinflammation. 2012;9:56. doi: 10.1186/1742-2094-9-56. PubMed DOI PMC

Lum J.S., Fernandez F., Matosin N., Andrews J.L., Huang X.-F., Ooi L., Newell K.A. Neurodevelopmental Expression Profile of Dimeric and Monomeric Group 1 mGluRs: Relevance to Schizophrenia Pathogenesis and Treatment. Sci. Rep. 2016;6:34391. doi: 10.1038/srep34391. PubMed DOI PMC

McDonald J.W., Shapiro S.M., Silverstein F.S., Johnston M.V. Role of Glutamate Receptor-Mediated Excitotoxicity in Bilirubin-Induced Brain Injury in the Gunn Rat Model. Exp. Neurol. 1998;150:21–29. doi: 10.1006/exnr.1997.6762. PubMed DOI

Wu C., Jin Y., Cui Y., Zhu Y., Yin S., Li C. Effects of Bilirubin on the Development and Electrical Activity of Neural Circuits. Front. Cell. Neurosci. 2023;17 doi: 10.3389/fncel.2023.1136250. PubMed DOI PMC

Wusthoff C.J., Loe I.M. Impact of Bilirubin-Induced Neurologic Dysfunction on Neurodevelopmental Outcomes. Semin. Fetal. Neonatal Med. 2015;20:52–57. doi: 10.1016/j.siny.2014.12.003. PubMed DOI PMC

Antonelli T., Ferraro L., Fuxe K., Finetti S., Fournier J., Tanganelli S., De Mattei M., Tomasini M.C. Neurotensin Enhances Endogenous Extracellular Glutamate Levels in Primary Cultures of Rat Cortical Neurons: Involvement of Neurotensin Receptor in NMDA Induced Excitotoxicity. Cereb. Cortex. 2004;14:466–473. doi: 10.1093/cercor/bhh008. PubMed DOI

Antonelli T., Fuxe K., Tomasini M.C., Mazzoni E., Agnati L.F., Tanganelli S., Ferraro L. Neurotensin Receptor Mechanisms and Its Modulation of Glutamate Transmission in the Brain: Relevance for Neurodegenerative Diseases and Their Treatment. Prog. Neurobiol. 2007;83:92–109. doi: 10.1016/j.pneurobio.2007.06.006. PubMed DOI

Boules M., Li Z., Smith K., Fredrickson P., Richelson E. Diverse Roles of Neurotensin Agonists in the Central Nervous System. Front. Endocrinol. 2013;4 doi: 10.3389/fendo.2013.00036. PubMed DOI PMC

Chen L., Yung K.K.L., Yung W.H. Neurotensin Selectively Facilitates Glutamatergic Transmission in Globus Pallidus. Neuroscience. 2006;141:1871–1878. doi: 10.1016/j.neuroscience.2006.05.049. PubMed DOI

Kato H.E., Zhang Y., Hu H., Suomivuori C.-M., Kadji F.M.N., Aoki J., Krishna Kumar K., Fonseca R., Hilger D., Huang W., et al. Conformational Transitions of a Neurotensin Receptor 1–Gi1 Complex. Nature. 2019;572:80–85. doi: 10.1038/s41586-019-1337-6. PubMed DOI PMC

Li S., Geiger J.D., Lei S. Neurotensin Enhances GABAergic Activity in Rat Hippocampus CA1 Region by Modulating L-Type Calcium Channels. J. Neurophysiol. 2008;99:2134–2143. doi: 10.1152/jn.00890.2007. PubMed DOI

Ogawa W.N., Baptista V., Aguiar J.F., Varanda W.A. Neurotensin Modulates Synaptic Transmission in the Nucleus of the Solitary Tract of the Rat. Neuroscience. 2005;130:309–315. doi: 10.1016/j.neuroscience.2004.09.019. PubMed DOI

St-Gelais F., Jomphe C., Trudeau L.-É. The Role of Neurotensin in Central Nervous System Pathophysiology: What Is the Evidence? J. Psychiatry Neurosci. 2006;31:229–245. PubMed PMC

Woodworth H.L., Batchelor H.M., Beekly B.G., Bugescu R., Brown J.A., Kurt G., Fuller P.M., Leinninger G.M. Neurotensin Receptor-1 Identifies a Subset of Ventral Tegmental Dopamine Neurons That Coordinates Energy Balance. Cell Rep. 2017;20:1881–1892. doi: 10.1016/j.celrep.2017.08.001. PubMed DOI PMC

Xiao Z., Cilz N.I., Kurada L., Hu B., Yang C., Wada E., Combs C.K., Porter J.E., Lesage F., Lei S. Activation of Neurotensin Receptor 1 Facilitates Neuronal Excitability and Spatial Learning and Memory in the Entorhinal Cortex: Beneficial Actions in an Alzheimer’s Disease Model. J. Neurosci. 2014;34:7027–7042. doi: 10.1523/JNEUROSCI.0408-14.2014. PubMed DOI PMC

Decourt B., Bouleau Y., Dulon D., Hafidi A. Identification of Differentially Expressed Genes in the Developing Mouse Inferior Colliculus. Dev. Brain Res. 2005;159:29–35. doi: 10.1016/j.devbrainres.2005.06.010. PubMed DOI

Fernández-Calle R., Vicente-Rodríguez M., Gramage E., Pita J., Pérez-García C., Ferrer-Alcón M., Uribarri M., Ramos M.P., Herradón G. Pleiotrophin Regulates Microglia-Mediated Neuroinflammation. J. Neuroinflammation. 2017;14:46. doi: 10.1186/s12974-017-0823-8. PubMed DOI PMC

González-Castillo C., Ortuño-Sahagún D., Guzmán-Brambila C., Pallàs M., Rojas-Mayorquín A.E. Pleiotrophin as a Central Nervous System Neuromodulator, Evidences from the Hippocampus. Front. Cell. Neurosci. 2015;8 doi: 10.3389/fncel.2014.00443. PubMed DOI PMC

Wanaka A., Carroll S.L., Milbrandt J. Developmentally Regulated Expression of Pleiotrophin, a Novel Heparin Binding Growth Factor, in the Nervous System of the Rat. Dev. Brain Res. 1993;72:133–144. doi: 10.1016/0165-3806(93)90166-8. PubMed DOI

Eckert A., Schmitt K., Götz J. Mitochondrial Dysfunction - the Beginning of the End in Alzheimer’s Disease? Separate and Synergistic Modes of Tau and Amyloid-β Toxicity. Alzheimers Res. Ther. 2011;3:15. doi: 10.1186/alzrt74. PubMed DOI PMC

Foti S.C., Hargreaves I., Carrington S., Kiely A.P., Houlden H., Holton J.L. Cerebral Mitochondrial Electron Transport Chain Dysfunction in Multiple System Atrophy and Parkinson’s Disease. Sci. Rep. 2019;9:6559. doi: 10.1038/s41598-019-42902-7. PubMed DOI PMC

Knowlton W.M., Hubert T., Wu Z., Chisholm A.D., Jin Y. A Select Subset of Electron Transport Chain Genes Associated with Optic Atrophy Link Mitochondria to Axon Regeneration in Caenorhabditis Elegans. Front. Neurosci. 2017;11 doi: 10.3389/fnins.2017.00263. PubMed DOI PMC

Keino H., Sato H., Semba R., Aono S., Aoki E., Kashiwamata S. Mode of Prevention by Phototherapy of Cerebellar Hypoplasia in a New Sprague-Dawley Strain of Jaundiced Gunn Rats. Pediatr. Neurosurg. 2008;12:145–150. doi: 10.1159/000120237. PubMed DOI

Stansberg C., Ersland K.M., van der Valk P., Steen V.M. Gene Expression in the Rat Brain: High Similarity but Unique Differences between Frontomedial-, Temporal- and Occipital Cortex. BMC Neurosci. 2011;12:15. doi: 10.1186/1471-2202-12-15. PubMed DOI PMC

Davis D.N., Strong M.D., Chambers E., Hart M.D., Bettaieb A., Clarke S.L., Smith B.J., Stoecker B.J., Lucas E.A., Lin D., et al. A Role for Zinc Transporter Gene SLC39A12 in the Nervous System and Beyond. Gene. 2021;799:145824. doi: 10.1016/j.gene.2021.145824. PubMed DOI PMC

Scarr E., Udawela M., Greenough M.A., Neo J., Suk Seo M., Money T.T., Upadhyay A., Bush A.I., Everall I.P., Thomas E.A., et al. Increased Cortical Expression of the Zinc Transporter SLC39A12 Suggests a Breakdown in Zinc Cellular Homeostasis as Part of the Pathophysiology of Schizophrenia. Npj Schizophr. 2016;2:1–7. doi: 10.1038/npjschz.2016.2. PubMed DOI PMC

Bly M. Examination of the Zinc Transporter Gene, SLC39A12. Schizophr. Res. 2006;81:321–322. doi: 10.1016/j.schres.2005.07.039. PubMed DOI

Gambaro S.E., Robert M.C., Tiribelli C., Gazzin S. Role of Brain Cytochrome P450 Mono-Oxygenases in Bilirubin Oxidation-Specific Induction and Activity. Arch. Toxicol. 2016;90:279–290. doi: 10.1007/s00204-014-1394-4. PubMed DOI

Bianco A., Dvořák A., Capková N., Gironde C., Tiribelli C., Furger C., Vitek L., Bellarosa C. The Extent of Intracellular Accumulation of Bilirubin Determines Its Anti- or Pro-Oxidant Effect. Int. J. Mol. Sci. 2020;21:8101. doi: 10.3390/ijms21218101. PubMed DOI PMC

Dal Ben M., Bottin C., Zanconati F., Tiribelli C., Gazzin S. Evaluation of Region Selective Bilirubin-Induced Brain Damage as a Basis for a Pharmacological Treatment. Sci. Rep. 2017;7:41032. doi: 10.1038/srep41032. PubMed DOI PMC

Falcão A.S., Silva R.F.M., Vaz A.R., Silva S.L., Fernandes A., Brites D. Cross-Talk Between Neurons and Astrocytes in Response to Bilirubin: Early Beneficial Effects. Neurochem. Res. 2013;38:644–659. doi: 10.1007/s11064-012-0963-2. PubMed DOI

Genc S., Genc K., Kumral A., Baskin H., Ozkan H. Bilirubin Is Cytotoxic to Rat Oligodendrocytes in Vitro. Brain Res. 2003;985:135–141. doi: 10.1016/S0006-8993(03)03037-3. PubMed DOI

Qaisiya M., Brischetto C., Jašprová J., Vitek L., Tiribelli C., Bellarosa C. Bilirubin-Induced ER Stress Contributes to the Inflammatory Response and Apoptosis in Neuronal Cells. Arch. Toxicol. 2017;91:1847–1858. doi: 10.1007/s00204-016-1835-3. PubMed DOI

Rodrigues C.M.P., Solá S., Brito M.A., Brites D., Moura J.J.G. Bilirubin Directly Disrupts Membrane Lipid Polarity and Fluidity, Protein Order, and Redox Status in Rat Mitochondria. J. Hepatol. 2002;36:335–341. doi: 10.1016/S0168-8278(01)00279-3. PubMed DOI

Silva R., Mata L.R., Gulbenkian S., Brito M.A., Tiribelli C., Brites D. Inhibition of Glutamate Uptake by Unconjugated Bilirubin in Cultured Cortical Rat Astrocytes: Role of Concentration and pH. Biochem. Biophys. Res. Commun. 1999;265:67–72. doi: 10.1006/bbrc.1999.1646. PubMed DOI

Chang F.-Y., Lee C.-C., Huang C.-C., Hsu K.-S. Unconjugated Bilirubin Exposure Impairs Hippocampal Long-Term Synaptic Plasticity. PLoS ONE. 2009;4:e5876. doi: 10.1371/journal.pone.0005876. PubMed DOI PMC

Yang L., Wu D., Wang B., Bu X., Zhu J., Tang J. The Effects of Hyperbilirubinaemia on Synaptic Plasticity in the Dentate Gyrus Region of the Rat Hippocampus in Vivo. Arch. Med. Sci. 2019;16:200–204. doi: 10.5114/aoms.2019.88625. PubMed DOI PMC

Zhang L., Liu W., Tanswell A.K., Luo X. The Effects of Bilirubin on Evoked Potentials and Long-Term Potentiation in Rat Hippocampus In Vivo. Pediatr. Res. 2003;53:939–944. doi: 10.1203/01.PDR.0000061563.63230.86. PubMed DOI

Liang M., Yin X.-L., Shi H.-B., Li C.-Y., Li X.-Y., Song N.-Y., Shi H.-S., Zhao Y., Wang L.-Y., Yin S.-K. Bilirubin Augments Ca2+ Load of Developing Bushy Neurons by Targeting Specific Subtype of Voltage-Gated Calcium Channels. Sci. Rep. 2017;7:431. doi: 10.1038/s41598-017-00275-9. PubMed DOI PMC

Rauti R., Qaisiya M., Tiribelli C., Ballerini L., Bellarosa C. Bilirubin Disrupts Calcium Homeostasis in Neonatal Hippocampal Neurons: A New Pathway of Neurotoxicity. Arch. Toxicol. 2020;94:845–855. doi: 10.1007/s00204-020-02659-9. PubMed DOI

Shi H.-S., Lai K., Yin X.-L., Liang M., Ye H.-B., Shi H.-B., Wang L.-Y., Yin S.-K. Ca2+-Dependent Recruitment of Voltage-Gated Sodium Channels Underlies Bilirubin-Induced Overexcitation and Neurotoxicity. Cell Death Dis. 2019;10:1–15. doi: 10.1038/s41419-019-1979-1. PubMed DOI PMC

Asad S.F., Singh S., Ahmad A., Hadi S.M. Bilirubin/Biliverdin–Cu(II) Induced DNA Breakage; Reaction Mechanism and Biological Significance. Toxicol. Lett. 2002;131:181–189. doi: 10.1016/S0378-4274(02)00031-0. PubMed DOI

Johnson C.H., Patterson A.D., Idle J.R., Gonzalez F.J. Xenobiotic Metabolomics: Major Impact on the Metabolome. Annu. Rev. Pharmacol. Toxicol. 2012;52:37–56. doi: 10.1146/annurev-pharmtox-010611-134748. PubMed DOI PMC

Ikeda Y., Hamano H., Satoh A., Horinouchi Y., Izawa-Ishizawa Y., Kihira Y., Ishizawa K., Aihara K., Tsuchiya K., Tamaki T. Bilirubin Exerts Pro-Angiogenic Property through Akt-eNOS-Dependent Pathway. Hypertens. Res. 2015;38:733–740. doi: 10.1038/hr.2015.74. PubMed DOI

Ruchaud S., Korfali N., Villa P., Kottke T.J., Dingwall C., Kaufmann S.H., Earnshaw W.C. Caspase-6 Gene Disruption Reveals a Requirement for Lamin A Cleavage in Apoptotic Chromatin Condensation. EMBO J. 2002;21:1967–1977. doi: 10.1093/emboj/21.8.1967. PubMed DOI PMC

Dehkordi M.H., Munn R.G.K., Fearnhead H.O. Non-Canonical Roles of Apoptotic Caspases in the Nervous System. Front. Cell Dev. Biol. 2022;10 doi: 10.3389/fcell.2022.840023. PubMed DOI PMC

Diamond I., Schmid R. Experimental Bilirubin Encephalopathy. The Mode of Entry of Bilirubin-14C into the Central Nervous System. J. Clin. Investig. 1966;45:678–689. doi: 10.1172/JCI105383. PubMed DOI PMC

Kasirer Y., Kaplan M., Hammerman C. Kernicterus on the Spectrum. NeoReviews. 2023;24:e329–e342. doi: 10.1542/neo.24-6-e329. PubMed DOI

Lunsing R.J. Subtle Bilirubin-Induced Neurodevelopmental Dysfunction (BIND) in the Term and Late Preterm Infant: Does It Exist? Semin. Perinatol. 2014;38:465–471. doi: 10.1053/j.semperi.2014.08.009. PubMed DOI

Aono S., Sato H., Semba R., Kashiwamata S., Kato K., Eng L.F. Comparative Study of Glial Marker Proteins in the Hypoplastic Cerebellum of Jaundiced Gunn Rats. J. Neurochem. 1988;50:717–721. doi: 10.1111/j.1471-4159.1988.tb02973.x. PubMed DOI

Bortolussi G., Baj G., Vodret S., Viviani G., Bittolo T., Muro A.F. Age-Dependent Pattern of Cerebellar Susceptibility to Bilirubin Neurotoxicity in Vivo in Mice. Dis. Model. Mech. 2014;7:1057–1068. doi: 10.1242/dmm.016535. PubMed DOI PMC

Yamamura H., Takagishi Y. Cerebellar Hypoplasia in the Hyperbilirubinemic Gunn Rat: Morphological Aspects. Nagoya J. Med. Sci. 1993;55:11–21. PubMed

Palmela I. Histological Findings in the Kernicterus-Associated Vulnerable Brain Regions Are Linked to Neurodegeneration, Alterations in Astrocyte and Pericyte Distribution, and Vascular Modifications. Int. J. Pathol. Clin. Res. 2015;1 doi: 10.23937/2469-5807/1510003. DOI

Barateiro A., Domingues H.S., Fernandes A., Relvas J.B., Brites D. Rat Cerebellar Slice Cultures Exposed to Bilirubin Evidence Reactive Gliosis, Excitotoxicity and Impaired Myelinogenesis That Is Prevented by AMPA and TNF-α Inhibitors. Mol. Neurobiol. 2014;49:424–439. doi: 10.1007/s12035-013-8530-7. PubMed DOI

Barateiro A., Chen S., Yueh M.-F., Fernandes A., Domingues H.S., Relvas J., Barbier O., Nguyen N., Tukey R.H., Brites D. Reduced Myelination and Increased Glia Reactivity Resulting from Severe Neonatal Hyperbilirubinemia. Mol. Pharmacol. 2016;89:84–93. doi: 10.1124/mol.115.098228. PubMed DOI PMC

Fernandes A., Silva R.F.M., Falcão A.S., Brito M.A., Brites D. Cytokine Production, Glutamate Release and Cell Death in Rat Cultured Astrocytes Treated with Unconjugated Bilirubin and LPS. J. Neuroimmunol. 2004;153:64–75. doi: 10.1016/j.jneuroim.2004.04.007. PubMed DOI

Silva R.F.M., Rodrigues C.M.P., Brites D. Rat Cultured Neuronal and Glial Cells Respond Differently to Toxicity of Unconjugated Bilirubin. Pediatr. Res. 2002;51:535–541. doi: 10.1203/00006450-200204000-00022. PubMed DOI

Vodret S., Bortolussi G., Jašprová J., Vitek L., Muro A.F. Inflammatory Signature of Cerebellar Neurodegeneration during Neonatal Hyperbilirubinemia in Ugt1-/-Mouse Model. J. Neuroinflammation. 2017;14:64. doi: 10.1186/s12974-017-0838-1. PubMed DOI PMC

Rhyu I.J. Bergman Glial Cell Morphology under the High Voltage Electron Microscope. Appl. Microsc. 2019;49:5. doi: 10.1186/s42649-019-0007-3. PubMed DOI PMC

Dani C., Pratesi S., Ilari A., Lana D., Giovannini M.G., Nosi D., Buonvicino D., Landucci E., Bani D., Mannaioni G., et al. Neurotoxicity of Unconjugated Bilirubin in Mature and Immature Rat Organotypic Hippocampal Slice Cultures. Neonatology. 2019;115:217–225. doi: 10.1159/000494101. PubMed DOI

Falcão A.S., Fernandes A., Brito M.A., Silva R.F.M., Brites D. Bilirubin-Induced Immunostimulant Effects and Toxicity Vary with Neural Cell Type and Maturation State. Acta Neuropathol. 2006;112:95–105. doi: 10.1007/s00401-006-0078-4. PubMed DOI

Silva R.F.M., Mata L.M., Gulbenkian S., Brites D. Endocytosis in Rat Cultured Astrocytes Is Inhibited by Unconjugated Bilirubin. Neurochem. Res. 2001;26:793–800. doi: 10.1023/A:1011608017870. PubMed DOI

Sturrock R.R., Jew J.Y. A Quantitative Histological Study of Changes in Neurons and Glia in the Gunn Rat Brain. Neuropathol. Appl. Neurobiol. 1978;4:209–223. doi: 10.1111/j.1365-2990.1978.tb00538.x. PubMed DOI

Yamada K., Watanabe M. Cytodifferentiation of Bergmann Glia and Its Relationship with Purkinje Cells. Anat. Sci. Int. 2002;77:94–108. doi: 10.1046/j.0022-7722.2002.00021.x. PubMed DOI

Cerrato V. Cerebellar Astrocytes: Much More Than Passive Bystanders In Ataxia Pathophysiology. J. Clin. Med. 2020;9:757. doi: 10.3390/jcm9030757. PubMed DOI PMC

Kim J.H., Lukowicz A., Qu W., Johnson A., Cvetanovic M. Astroglia Contribute to the Pathogenesis of Spinocerebellar Ataxia Type 1 (SCA1) in a Biphasic, Stage-of-Disease Specific Manner. Glia. 2018;66:1972–1987. doi: 10.1002/glia.23451. PubMed DOI PMC

Roger C., Koziel V., Vert P., Nehlig A. Mapping of the Consequences of Bilirubin Exposure in the Immature Rat: Local Cerebral Metabolic Rates for Glucose during Moderate and Severe Hyperbilirubinemia. Early Hum. Dev. 1995;43:133–144. doi: 10.1016/0378-3782(95)01668-6. PubMed DOI

Llido J.P., Jayanti S., Tiribelli C., Gazzin S. Bilirubin and Redox Stress in Age-Related Brain Diseases. Antioxidants. 2023;12:1525. doi: 10.3390/antiox12081525. PubMed DOI PMC

Zhang S., Fan Y., Zheng B., Wang Y., Miao C., Su Y., Li K., E Y., Wang X., He X., et al. Bilirubin Improves Gap Junction to Alleviate Doxorubicin-Induced Cardiotoxicity by Regulating AMPK-Axl-SOCS3-Cx43 Axis. Front. Pharmacol. 2022;13 doi: 10.3389/fphar.2022.828890. PubMed DOI PMC

Zhang Y., Chen Y., Chen X., Gao Y., Luo J., Lu S., Li Q., Li P., Bai M., Jiang T., et al. Unconjugated Bilirubin Promotes Uric Acid Restoration by Activating Hepatic AMPK Pathway. Free Radic. Biol. Med. 2024;224:644–659. doi: 10.1016/j.freeradbiomed.2024.09.023. PubMed DOI

Grojean S., Koziel V., Vert P., Daval J.-L. Bilirubin Induces Apoptosis via Activation of NMDA Receptors in Developing Rat Brain Neurons. Exp. Neurol. 2000;166:334–341. doi: 10.1006/exnr.2000.7518. PubMed DOI

Hansen T.W.R. Bilirubin Oxidation in Brain. Mol. Genet. Metab. 2000;71:411–417. doi: 10.1006/mgme.2000.3028. PubMed DOI

Zetterström R., Ernster L. Bilirubin, an Uncoupler of Oxidative Phosphorylation in Isolated Mitochondria. Nature. 1956;178:1335–1337. doi: 10.1038/1781335a0. PubMed DOI

Riordan S.M., Bittel D.C., Le Pichon J.-B., Gazzin S., Tiribelli C., Watchko J.F., Wennberg R.P., Shapiro S.M. A Hypothesis for Using Pathway Genetic Load Analysis for Understanding Complex Outcomes in Bilirubin Encephalopathy. Front. Neurosci. 2016;10:376. doi: 10.3389/fnins.2016.00376. PubMed DOI PMC

Watchko J.F., Lin Z., Clark R.H., Kelleher A.S., Walker M.W., Spitzer A.R., for the Pediatrix Hyperbilirubinemia Study Group Complex Multifactorial Nature of Significant Hyperbilirubinemia in Neonates. Pediatrics. 2009;124:e868–e877. doi: 10.1542/peds.2009-0460. PubMed DOI

Gunn C.H. HEREDITARY ACHOLURIC JAUNDICE: In a New Mutant Strain of Rats. J. Hered. 1938;29:137–139. doi: 10.1093/oxfordjournals.jhered.a104478. DOI

Stobie P.E., Hansen C.T., Hailey J.R., Levine R.L. A Difference in Mortality between Two Strains of Jaundiced Rats. Pediatrics. 1991;87:88–93. doi: 10.1542/peds.87.1.88. PubMed DOI

Amin S.B., Smith T., Timler G. Developmental Influence of Unconjugated Hyperbilirubinemia and Neurobehavioral Disorders. Pediatr. Res. 2019;85:191–197. doi: 10.1038/s41390-018-0216-4. PubMed DOI

Brito M.A., Pereira P., Barroso C., Aronica E., Brites D. New Autopsy Findings in Different Brain Regions of a Preterm Neonate With Kernicterus: Neurovascular Alterations and Up-Regulation of Efflux Transporters. Pediatr. Neurol. 2013;49:431–438. doi: 10.1016/j.pediatrneurol.2013.08.020. PubMed DOI

Gazzin S., Jayanti S., Tiribelli C. Models of Bilirubin Neurological Damage: Lessons Learned and New Challenges. Pediatr. Res. 2023;93:1838–1845. doi: 10.1038/s41390-022-02351-x. PubMed DOI

Hu W., Cheng X., Ye X., Zhao L., Huang Y., Zhu H., Yan Z., Wang X., Wang X., Bai G., et al. Ex Vivo 1H Nuclear Magnetic Resonance Spectroscopy Reveals Systematic Alterations in Cerebral Metabolites as the Key Pathogenetic Mechanism of Bilirubin Encephalopathy. Mol. Brain. 2014;7:87. doi: 10.1186/s13041-014-0087-5. PubMed DOI PMC

Vaz A.R., Silva S.L., Barateiro A., Falcão A.S., Fernandes A., Brito M.A., Brites D. Selective Vulnerability of Rat Brain Regions to Unconjugated Bilirubin. Mol. Cell. Neurosci. 2011;48:82–93. doi: 10.1016/j.mcn.2011.06.008. PubMed DOI

Von Bartheld C.S., Bahney J., Herculano-Houzel S. The Search for True Numbers of Neurons and Glial Cells in the Human Brain: A Review of 150 Years of Cell Counting. J. Comp. Neurol. 2016;524:3865–3895. doi: 10.1002/cne.24040. PubMed DOI PMC

Mahmoud S., Gharagozloo M., Simard C., Gris D. Astrocytes Maintain Glutamate Homeostasis in the CNS by Controlling the Balance between Glutamate Uptake and Release. Cells. 2019;8:184. doi: 10.3390/cells8020184. PubMed DOI PMC

Silva S.L., Vaz A.R., Diógenes M.J., van Rooijen N., Sebastião A.M., Fernandes A., Silva R.F.M., Brites D. Neuritic Growth Impairment and Cell Death by Unconjugated Bilirubin Is Mediated by NO and Glutamate, Modulated by Microglia, and Prevented by Glycoursodeoxycholic Acid and Interleukin-10. Neuropharmacology. 2012;62:2398–2408. doi: 10.1016/j.neuropharm.2012.02.002. PubMed DOI

Oakden W.K., Moore A.M., Blaser S., Noseworthy M.D. 1H MR Spectroscopic Characteristics of Kernicterus: A Possible Metabolic Signature. AJNR Am. J. Neuroradiol. 2005;26:1571–1574. PubMed PMC

Grojean S., Lievre V., Koziel V., Vert P., Daval J.-L. Bilirubin Exerts Additional Toxic Effects in Hypoxic Cultured Neurons from the Developing Rat Brain by the Recruitment of Glutamate Neurotoxicity. Pediatr. Res. 2001;49:507–513. doi: 10.1203/00006450-200104000-00012. PubMed DOI

Hoffman D.J., Zanelli S.A., Kubin J., Mishra O.P., Delivoria-Papadopoulos M. The in Vivo Effect of Bilirubin on the N-Methyl-D-Aspartate Receptor/Ion Channel Complex in the Brains of Newborn Piglets. Pediatr. Res. 1996;40:804–808. doi: 10.1203/00006450-199612000-00005. PubMed DOI

Shapiro S.M., Sombati S., Geiger A., Rice A.C. NMDA Channel Antagonist MK-801 Does Not Protect against Bilirubin Neurotoxicity. Biol. Neonate. 2007;92:248–257. doi: 10.1159/000103743. PubMed DOI

Warr O., Mort D., Attwell D. Bilirubin Does Not Modulate Ionotropic Glutamate Receptors or Glutamate Transporters. Brain Res. 2000;879:13–16. doi: 10.1016/S0006-8993(00)02676-7. PubMed DOI

Gazzin S., Vitek L., Watchko J., Shapiro S.M., Tiribelli C. A Novel Perspective on the Biology of Bilirubin in Health and Disease. Trends Mol. Med. 2016;22:758–768. doi: 10.1016/j.molmed.2016.07.004. PubMed DOI

Huang H., Li S., Zhang Y., He C., Hua Z. Microglial Priming in Bilirubin-Induced Neurotoxicity. Neurotox. Res. 2023;41:338–348. doi: 10.1007/s12640-023-00643-6. PubMed DOI

Schiavon E., Smalley J.L., Newton S., Greig N.H., Forsythe I.D. Neuroinflammation and ER-Stress Are Key Mechanisms of Acute Bilirubin Toxicity and Hearing Loss in a Mouse Model. PLoS ONE. 2018;13:e0201022. doi: 10.1371/journal.pone.0201022. PubMed DOI PMC

Rowley N.M., Madsen K.K., Schousboe A., Steve White H. Glutamate and GABA Synthesis, Release, Transport and Metabolism as Targets for Seizure Control. Neurochem. Int. 2012;61:546–558. doi: 10.1016/j.neuint.2012.02.013. PubMed DOI

Li C.-Y., Shi H.-B., Chen Z.-N., Ye H.-B., Song N., Yin S.-K. Protein Kinase A and C Signaling Induces Bilirubin Potentiation of GABA/Glycinergic Synaptic Transmission in Rat Ventral Cochlear Nucleus Neurons. Brain Res. 2010;1348:30–41. doi: 10.1016/j.brainres.2010.06.022. PubMed DOI

Shi H.-B., Kakazu Y., Shibata S., Matsumoto N., Nakagawa T., Komune S. Bilirubin Potentiates Inhibitory Synaptic Transmission in Lateral Superior Olive Neurons of the Rat. Neurosci. Res. 2006;55:161–170. doi: 10.1016/j.neures.2006.02.015. PubMed DOI

Yin X.-L., Liang M., Shi H.-B., Wang L.-Y., Li C.-Y., Yin S.-K. The Role of Gamma-Aminobutyric Acid/Glycinergic Synaptic Transmission in Mediating Bilirubin-Induced Hyperexcitation in Developing Auditory Neurons. Toxicol. Lett. 2016;240:1–9. doi: 10.1016/j.toxlet.2015.10.008. PubMed DOI

Ben-Ari Y., Khazipov R., Leinekugel X., Caillard O., Gaiarsa J.-L. GABAA, NMDA and AMPA Receptors: A Developmentally Regulated ‘ménage à Trois’. Trends Neurosci. 1997;20:523–529. doi: 10.1016/S0166-2236(97)01147-8. PubMed DOI

Wang D.D., Kriegstein A.R. GABA Regulates Excitatory Synapse Formation in the Neocortex via NMDA Receptor Activation. J. Neurosci. 2008;28:5547–5558. doi: 10.1523/JNEUROSCI.5599-07.2008. PubMed DOI PMC

Yamasaki M., Aiba A., Kano M., Watanabe M. mGluR1 Signaling in Cerebellar Purkinje Cells: Subcellular Organization and Involvement in Cerebellar Function and Disease. Neuropharmacology. 2021;194:108629. doi: 10.1016/j.neuropharm.2021.108629. PubMed DOI

Ledonne A., Mercuri N.B. Insights on the Functional Interaction between Group 1 Metabotropic Glutamate Receptors (mGluRI) and ErbB Receptors. Int. J. Mol. Sci. 2020;21:7913. doi: 10.3390/ijms21217913. PubMed DOI PMC

Hansen K.B., Wollmuth L.P., Bowie D., Furukawa H., Menniti F.S., Sobolevsky A.I., Swanson G.T., Swanger S.A., Greger I.H., Nakagawa T., et al. Structure, Function, and Pharmacology of Glutamate Receptor Ion Channelss. Pharmacol. Rev. 2021;73:1469–1658. doi: 10.1124/pharmrev.120.000131. PubMed DOI PMC

Tellios V., Maksoud M.J.E., Xiang Y.-Y., Lu W.-Y. Nitric Oxide Critically Regulates Purkinje Neuron Dendritic Development Through a Metabotropic Glutamate Receptor Type 1–Mediated Mechanism. Cerebellum. 2020;19:510–526. doi: 10.1007/s12311-020-01125-7. PubMed DOI

Tabata T., Araishi K., Hashimoto K., Hashimotodani Y., van der Putten H., Bettler B., Kano M. Ca2+ Activity at GABAB Receptors Constitutively Promotes Metabotropic Glutamate Signaling in the Absence of GABA. Proc. Natl. Acad. Sci. USA. 2004;101:16952–16957. doi: 10.1073/pnas.0405387101. PubMed DOI PMC

Guo C., Rudolph S., Neuwirth M.E., Regehr W.G. Purkinje Cell Outputs Selectively Inhibit a Subset of Unipolar Brush Cells in the Input Layer of the Cerebellar Cortex. eLife. 2021;10:e68802. doi: 10.7554/eLife.68802. PubMed DOI PMC

Loftspring M.C., Johnson H.L., Feng R., Johnson A.J., Clark J.F. Unconjugated Bilirubin Contributes to Early Inflammation and Edema after Intracerebral Hemorrhage. J. Cereb. Blood Flow Metab. 2011;31:1133–1142. doi: 10.1038/jcbfm.2010.203. PubMed DOI PMC

Hirai H. Protein Kinase C in the Cerebellum: Its Significance and Remaining Conundrums. Cerebellum. 2018;17:23–27. doi: 10.1007/s12311-017-0898-x. PubMed DOI

Bellone C., Lüscher C. mGluRs Induce a Long-Term Depression in the Ventral Tegmental Area That Involves a Switch of the Subunit Composition of AMPA Receptors. Eur. J. Neurosci. 2005;21:1280–1288. doi: 10.1111/j.1460-9568.2005.03979.x. PubMed DOI

Faas G.C., Adwanikar H., Gereau R.W., Saggau P. Modulation of Presynaptic Calcium Transients by Metabotropic Glutamate Receptor Activation: A Differential Role in Acute Depression of Synaptic Transmission and Long-Term Depression. J. Neurosci. 2002;22:6885–6890. doi: 10.1523/JNEUROSCI.22-16-06885.2002. PubMed DOI PMC

Downs A.M., Roman K.M., Campbell S.A., Pisani A., Hess E.J., Bonsi P. The Neurobiological Basis for Novel Experimental Therapeutics in Dystonia. Neurobiol. Dis. 2019;130:104526. doi: 10.1016/j.nbd.2019.104526. PubMed DOI PMC

Pagonabarraga J., Tinazzi M., Caccia C., Jost W.H. The Role of Glutamatergic Neurotransmission in the Motor and Non-Motor Symptoms in Parkinson’s Disease: Clinical Cases and a Review of the Literature. J. Clin. Neurosci. 2021;90:178–183. doi: 10.1016/j.jocn.2021.05.056. PubMed DOI

Chowdhury J.R., Kondapalli R., Chowdhury N.R. Gunn Rat: A Model for Inherited Deficiency of Bilirubin Glucuronidation. Adv. Vet. Sci. Comp. Med. 1993;37:149–173. PubMed

elAwady M., Chowdhury J.R., Kesari K., van Es H., Jansen P.L., Lederstein M., Arias I.M., Chowdhury N.R. Mechanism of the Lack of Induction of UDP-Glucuronosyltransferase Activity in Gunn Rats by 3-Methylcholanthrene. Identification of a Truncated Enzyme. J. Biol. Chem. 1990;265:10752–10758. doi: 10.1016/S0021-9258(18)87011-9. PubMed DOI

Bustin S.A., Benes V., Garson J.A., Hellemans J., Huggett J., Kubista M., Mueller R., Nolan T., Pfaffl M.W., Shipley G.L., et al. The MIQE Guidelines: Minimum Information for Publication of Quantitative Real-Time PCR Experiments. Clin. Chem. 2009;55:611–622. doi: 10.1373/clinchem.2008.112797. PubMed DOI

Pfaffl M.W. A New Mathematical Model for Relative Quantification in Real-Time RT–PCR. Nucleic Acids Res. 2001;29:e45. doi: 10.1093/nar/29.9.e45. PubMed DOI PMC

Vandesompele J., De Preter K., Pattyn F., Poppe B., Van Roy N., De Paepe A., Speleman F. Accurate Normalization of Real-Time Quantitative RT-PCR Data by Geometric Averaging of Multiple Internal Control Genes. Genome Biol. 2002;3:research0034.1. doi: 10.1186/gb-2002-3-7-research0034. PubMed DOI PMC

Ehrlich P. Sulfodiazobenzol ein reagens auf bilirubin. Cent. Klinsche Med. 1883;4:721–723.

Ehrlich P. Sulfodiazobenzol als Reagens auf Bilirubin. Z. Für Anal. Chem. 1884;23:275–276. doi: 10.1007/BF01360509. DOI

Doumas B.T., Ard Watson W., Biggs H.G. Albumin Standards and the Measurement of Serum Albumin with Bromcresol Green. Clin. Chim. Acta. 1997;258:21–30. doi: 10.1016/S0009-8981(96)06447-9. PubMed DOI

Jašprová J., Dvořák A., Vecka M., Leníček M., Lacina O., Valášková P., Zapadlo M., Plavka R., Klán P., Vítek L. A Novel Accurate LC-MS/MS Method for Quantitative Determination of Z-Lumirubin. Sci. Rep. 2020;10:4411. doi: 10.1038/s41598-020-61280-z. PubMed DOI PMC

Posit Team Posit. [(accessed on 30 April 2025)]. Available online: https://www.posit.co/

Oyelade J., Isewon I., Oladipupo F., Aromolaran O., Uwoghiren E., Ameh F., Achas M., Adebiyi E. Clustering Algorithms: Their Application to Gene Expression Data. Bioinforma. Biol. Insights. 2016;10:BBI.S38316. doi: 10.4137/BBI.S38316. PubMed DOI PMC

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...