Path integration impairments reveal early cognitive changes in subjective cognitive decline

. 2025 Sep 05 ; 11 (36) : eadw6404. [epub] 20250903

Jazyk angličtina Země Spojené státy americké Médium print-electronic

Typ dokumentu časopisecké články

Perzistentní odkaz   https://www.medvik.cz/link/pmid40901947

Grantová podpora
R01 AG076198 NIA NIH HHS - United States

Path integration, the ability to track one's position using self-motion cues, is critically dependent on the grid cell network in the entorhinal cortex, a region vulnerable to early Alzheimer's disease pathology. In this study, we examined path integration performance in individuals with subjective cognitive decline (SCD), a group at increased risk for Alzheimer's disease, and healthy controls using an immersive virtual reality task. We developed a Bayesian computational model to decompose path integration errors into distinct components. SCD participants exhibited significantly higher path integration error, primarily driven by increased memory leak, while other modeling-derived error sources, such as velocity gain, sensory, and reporting noise, remained comparable across groups. Our findings suggest that path integration deficits, specifically memory leak, may serve as an early marker of neurodegeneration in SCD and highlight the potential of self-motion-based navigation tasks for detecting presymptomatic Alzheimer's disease-related cognitive changes.

Před aktualizací

PubMed

Zobrazit více v PubMed

Etienne A. S., Jeffery K. J., Path integration in mammals. Hippocampus 14, 180–192 (2004). PubMed

Wang R. F., Building a cognitive map by assembling multiple path integration systems. Psychon. Bull. Rev. 23, 692–702 (2016). PubMed

Gil M., Ancau M., Schlesiger M. I., Neitz A., Allen K., Marco R. J. D., Monyer H., Impaired path integration in mice with disrupted grid cell firing. Nat. Neurosci. 21, 81–91 (2018). PubMed

Braak H., Braak E., Neuropathological stageing of Alzheimer-related changes. Acta Neuropathol. 82, 239–259 (1991). PubMed

Ying J., Reboreda A., Yoshida M., Brandon M. P., Grid cell disruption in a mouse model of early Alzheimer’s disease reflects reduced integration of self-motion cues. Curr. Biol. 33, 2425–2437.e5 (2023). PubMed

Fu H., Rodriguez G. A., Herman M., Emrani S., Nahmani E., Barrett G., Figueroa H. Y., Goldberg E., Hussaini S. A., Duff K. E., Tau pathology induces excitatory neuron loss, grid cell dysfunction, and spatial memory deficits reminiscent of early Alzheimer’s disease. Neuron 93, 533–541.e5 (2017). PubMed PMC

Bierbrauer A., Kunz L., Gomes C. A., Luhmann M., Deuker L., Getzmann S., Wascher E., Gajewski P. D., Hengstler J. G., Fernandez-Alvarez M., Atienza M., Cammisuli D. M., Bonatti F., Pruneti C., Percesepe A., Bellaali Y., Hanseeuw B., Strange B. A., Cantero J. L., Axmacher N., Unmasking selective path integration deficits in Alzheimer’s disease risk carriers. Sci. Adv. 6, eaba1394 (2020). PubMed PMC

Mokrisova I., Laczo J., Andel R., Gazova I., Vyhnalek M., Nedelska Z., Levcik D., Cerman J., Vlcek K., Hort J., Real-space path integration is impaired in Alzheimer’s disease and mild cognitive impairment. Behav. Brain Res. 307, 150–158 (2016). PubMed

Howett D., Castegnaro A., Krzywicka K., Hagman J., Marchment D., Henson R., Rio M., King J. A., Burgess N., Chan D., Differentiation of mild cognitive impairment using an entorhinal cortex-based test of virtual reality navigation. Brain 142, 1751–1766 (2019). PubMed PMC

Huang L.-K., Kuan Y.-C., Lin H.-W., Hu C.-J., Clinical trials of new drugs for Alzheimer disease: A 2020-2023 update. J. Biomed. Sci. 30, 83 (2023). PubMed PMC

van Dyck C. H., Swanson C. J., Aisen P., Bateman R. J., Chen C., Gee M., Kanekiyo M., Li D., Reyderman L., Cohen S., Froelich L., Katayama S., Sabbagh M., Vellas B., Watson D., Dhadda S., Irizarry M., Kramer L. D., Iwatsubo T., Lecanemab in early Alzheimer’s disease. N. Engl. J. Med. 388, 9–21 (2023). PubMed

Mitchell A. J., Beaumont H., Ferguson D., Yadegarfar M., Stubbs B., Risk of dementia and mild cognitive impairment in older people with subjective memory complaints: Meta-analysis. Acta Psychiatr. Scand. 130, 439–451 (2014). PubMed

Jessen F., Amariglio R. E., van Boxtel M., Breteler M., Ceccaldi M., Chételat G., Dubois B., Dufouil C., Ellis K. A., van der Flier W. M., Glodzik L., van Harten A. C., de Leon M. J., McHugh P., Mielke M. M., Molinuevo J. L., Mosconi L., Osorio R. S., Perrotin A., Petersen R. C., Rabin L. A., Rami L., Reisberg B., Rentz D. M., Sachdev P. S., de la Sayette V., Saykin A. J., Scheltens P., Shulman M. B., Slavin M. J., Sperling R. A., Stewart R., Uspenskaya O., Vellas B., Visser P. J., Wagner M., Subjective Cognitive Decline Initiative (SCD-I) Working Group , A conceptual framework for research on subjective cognitive decline in preclinical Alzheimer’s disease. Alzheimers Dement. 10, 844–852 (2014). PubMed PMC

Buckley R. F., Hanseeuw B., Schultz A. P., Vannini P., Aghjayan S. L., Properzi M. J., Jackson J. D., Mormino E. C., Rentz D. M., Sperling R. A., Johnson K. A., Amariglio R. E., Region-specific association of subjective cognitive decline with tauopathy independent of global β-amyloid burden. JAMA Neurol. 74, 1455–1463 (2017). PubMed PMC

Lappe M., Stiels M., Frenz H., Loomis J. M., Keeping track of the distance from home by leaky integration along veering paths. Exp. Brain Res. 212, 81–89 (2011). PubMed

Lappe M., Jenkin M., Harris L. R., Travel distance estimation from visual motion by leaky path integration. Exp. Brain Res. 180, 35–48 (2007). PubMed

Stangl M., Kanitscheider I., Riemer M., Fiete I., Wolbers T., Sources of path integration error in young and aging humans. Nat. Commun. 11, 2626 (2020). PubMed PMC

J. T. Townsend, J. R. Busemeyer, J. K. Kruschke, W. Vanpaemel, “Bayesian estimation in hierarchical models,” in DOI

Segen V., Ying J., Morgan E., Brandon M., Wolbers T., Path integration in normal aging and Alzheimer’s disease. Trends Cogn. Sci. 26, 142–158 (2022). PubMed

Wiener J. M., Berthoz A., Wolbers T., Dissociable cognitive mechanisms underlying human path integration. Exp. Brain Res. 208, 61–71 (2011). PubMed

Sadalla E. K., Montello D. R., Remembering changes in direction. Environ. Behav. 21, 346–363 (1989).

Castegnaro A., Ji Z., Rudzka K., Chan D., Burgess N., Overestimation in angular path integration precedes Alzheimer’s dementia. Curr. Biol. 33, 4650–4661.e7 (2023). PubMed PMC

Mahmood O., Adamo D., Briceno E., Moffat S. D., Age differences in visual path integration. Behav. Brain Res. 205, 88–95 (2009). PubMed

Duffy C. J., Wurtz R. H., Response of monkey MST neurons to optic flow stimuli with shifted centers of motion. J. Neurosci. 15, 5192–5208 (1995). PubMed PMC

Lappe M., Bremmer F., van den Berg A. V., Perception of self-motion from visual flow. Trends Cogn. Sci. 3, 329–336 (1999). PubMed

Hoffman M. D., Gelman A., The No-U-Turn Sampler: Adaptively setting path lengths in Hamiltonian Monte Carlo. J. Mach. Learn. Res. 15, 1593–1623 (2014).

Vehtari A., Gelman A., Gabry J., Practical Bayesian model evaluation using leave-one-out cross-validation and WAIC. Stat. Comput. 27, 1413–1432 (2017).

Kruschke J. K., Rejecting or accepting parameter values in Bayesian estimation. Adv. Methods Pract. Psychol. Sci. 1, 270–280 (2018).

van Arendonk J., Wolters F. J., Neitzel J., Vinke E. J., Vernooij M. W., Ghanbari M., Ikram M. A., Plasma neurofilament light chain in relation to 10-year change in cognition and neuroimaging markers: A population-based study. Geroscience 46, 57–70 (2024). PubMed PMC

Baiardi S., Quadalti C., Mammana A., Dellavalle S., Zenesini C., Sambati L., Pantieri R., Polischi B., Romano L., Suffritti M., Bentivenga G. M., Randi V., Stanzani-Maserati M., Capellari S., Parchi P., Diagnostic value of plasma p-tau181, NfL, and GFAP in a clinical setting cohort of prevalent neurodegenerative dementias. Alzheimers Res. Ther. 14, 153 (2022). PubMed PMC

Janelidze S., Mattsson N., Palmqvist S., Smith R., Beach T. G., Serrano G. E., Chai X., Proctor N. K., Eichenlaub U., Zetterberg H., Blennow K., Reiman E. M., Stomrud E., Dage J. L., Hansson O., Plasma P-tau181 in Alzheimer’s disease: Relationship to other biomarkers, differential diagnosis, neuropathology and longitudinal progression to Alzheimer’s dementia. Nat. Med. 26, 379–386 (2020). PubMed

Corder E. H., Saunders A. M., Strittmatter W. J., Schmechel D. E., Gaskell P. C., Small G. W., Roses A. D., Haines J. L., Pericak-Vance M. A., Gene dose of apolipoprotein E type 4 allele and the risk of Alzheimer’s disease in late onset families. Science 261, 921–923 (1993). PubMed

Adamo D. E., Briceño E. M., Sindone J. A., Alexander N. B., Moffat S. D., Age differences in virtual environment and real world path integration. Front. Aging Neurosci. 4, 26 (2012). PubMed PMC

Allen G. L., Kirasic K. C., Rashotte M. A., Haun D. B. M., Aging and path integration skill: Kinesthetic and vestibular contributions to wayfinding. Percept. Psychophys. 66, 170–179 (2004). PubMed

Newton C., Pope M., Rua C., Henson R., Ji Z., Burgess N., Rodgers C. T., Stangl M., Dounavi M.-E., Castegnaro A., Koychev I., Malhotra P., Wolbers T., Ritchie K., Ritchie C. W., O’Brien J., Su L., Chan D., Programme P. D. R., Entorhinal-based path integration selectively predicts midlife risk of Alzheimer’s disease. Alzheimers Dement. 20, 2779–2793 (2024). PubMed PMC

Vandierendonck A., Kemps E., Fastame M. C., Szmalec A., Working memory components of the Corsi blocks task. Br. J. Psychol. 95, 57–79 (2004). PubMed

Gómez-Isla T., Price J. L., McKeel D. W., Morris J. C., Growdon J. H., Hyman B. T., Profound loss of layer II entorhinal cortex neurons occurs in very mild Alzheimer’s disease. J. Neurosci. 16, 4491–4500 (1996). PubMed PMC

Kunz L., Schröder T. N., Lee H., Montag C., Lachmann B., Sariyska R., Reuter M., Stirnberg R., Stöcker T., Messing-Floeter P. C., Fell J., Doeller C. F., Axmacher N., Reduced grid-cell–like representations in adults at genetic risk for Alzheimer’s disease. Science 350, 430–433 (2015). PubMed

Jun H., Bramian A., Soma S., Saito T., Saido T. C., Igarashi K. M., Disrupted place cell remapping and impaired grid cells in a knockin model of Alzheimer’s disease. Neuron 107, 1095–1112.e6 (2020). PubMed PMC

Ying J., Keinath A. T., Lavoie R., Vigneault E., Mestikawy S. E., Brandon M. P., Disruption of the grid cell network in a mouse model of early Alzheimer’s disease. Nat. Commun. 13, 886 (2022). PubMed PMC

Burak Y., Fiete I., Accurate path integration in continuous attractor network models of grid cells. PLOS Comput. Biol. 5, e1000291 (2009). PubMed PMC

Verret L., Mann E. O., Hang G. B., Barth A. M. I., Cobos I., Ho K., Devidze N., Masliah E., Kreitzer A. C., Mody I., Mucke L., Palop J. J., Inhibitory interneuron deficit links altered network activity and cognitive dysfunction in Alzheimer model. Cell 149, 708–721 (2012). PubMed PMC

Pastoll H., Solanka L., van Rossum M. C. W., Nolan M. F., Feedback inhibition enables theta-nested gamma oscillations and grid firing fields. Neuron 77, 141–154 (2013). PubMed

Rodríguez-Martín T., Pooler A. M., Lau D. H. W., Mórotz G. M., Vos K. J. D., Gilley J., Coleman M. P., Hanger D. P., Reduced number of axonal mitochondria and tau hypophosphorylation in mouse P301L tau knockin neurons. Neurobiol. Dis. 85, 1–10 (2016). PubMed PMC

Colgin L. L., Mechanisms and functions of theta rhythms. Annu. Rev. Neurosci. 36, 295–312 (2013). PubMed

Brandon M. P., Bogaard A. R., Libby C. P., Connerney M. A., Gupta K., Hasselmo M. E., Reduction of theta rhythm dissociates grid cell spatial periodicity from directional tuning. Science 332, 595–599 (2011). PubMed PMC

Koenig J., Linder A. N., Leutgeb J. K., Leutgeb S., The spatial periodicity of grid cells is not sustained during reduced theta oscillations. Science 332, 592–595 (2011). PubMed

Hernández-Pérez J. J., Cooper K. W., Newman E. L., Medial entorhinal cortex activates in a traveling wave in the rat. eLife 9, e52289 (2020). PubMed PMC

Venditto S. J. C., Le B., Newman E. L., Place cell assemblies remain intact, despite reduced phase precession, after cholinergic disruption. Hippocampus 29, 1075–1090 (2019). PubMed PMC

Newman E. L., Venditto S. J. C., Climer J. R., Petter E. A., Gillet S. N., Levy S., Precise spike timing dynamics of hippocampal place cell activity sensitive to cholinergic disruption. Hippocampus 27, 1069–1082 (2017). PubMed PMC

Newman E. L., Hasselmo M. E., Grid cell firing properties vary as a function of theta phase locking preferences in the rat medial entorhinal cortex. Front. Syst. Neurosci. 8, 193 (2014). PubMed PMC

Nakazono T., Lam T. N., Patel A. Y., Kitazawa M., Saito T., Saido T. C., Igarashi K. M., Impaired in vivo gamma oscillations in the medial entorhinal cortex of knock-in Alzheimer model. Front. Syst. Neurosci. 11, 48 (2017). PubMed PMC

Palop J. J., Mucke L., Network abnormalities and interneuron dysfunction in Alzheimer disease. Nat. Rev. Neurosci. 17, 777–792 (2016). PubMed PMC

Hampel H., Mesulam M. M., Cuello A. C., Farlow M. R., Giacobini E., Grossberg G. T., Khachaturian A. S., Vergallo A., Cavedo E., Snyder P. J., Khachaturian Z. S., The cholinergic system in the pathophysiology and treatment of Alzheimer’s disease. Brain 141, 1917–1933 (2018). PubMed PMC

Newman E. L., Climer J. R., Hasselmo M. E., Grid cell spatial tuning reduced following systemic muscarinic receptor blockade. Hippocampus 24, 643–655 (2014). PubMed PMC

Newman E. L., Gillet S. N., Climer J. R., Hasselmo M. E., Cholinergic blockade reduces theta-gamma phase amplitude coupling and speed modulation of theta frequency consistent with behavioral effects on encoding. J. Neurosci. 33, 19635–19646 (2013). PubMed PMC

Kraus B. J., Brandon M. P., Robinson R. J., Connerney M. A., Hasselmo M. E., Eichenbaum H., During running in place, grid cells integrate elapsed time and distance run. Neuron 88, 578–589 (2015). PubMed PMC

Aronov D., Nevers R., Tank D. W., Mapping of a non-spatial dimension by the hippocampal–entorhinal circuit. Nature 543, 719–722 (2017). PubMed PMC

Bellmund J. L. S., Gärdenfors P., Moser E. I., Doeller C. F., Navigating cognition: Spatial codes for human thinking. Science 362, eaat6766 (2018). PubMed

Constantinescu A. O., O’Reilly J. X., Behrens T. E. J., Organizing conceptual knowledge in humans with a gridlike code. Science 352, 1464–1468 (2016). PubMed PMC

Viganò S., Rubino V., Soccio A. D., Buiatti M., Piazza M., Grid-like and distance codes for representing word meaning in the human brain. Neuroimage 232, 117876 (2021). PubMed

Colmant L., Bierbrauer A., Bellaali Y., Kunz L., Dongen J. V., Sleegers K., Axmacher N., Lefèvre P., Hanseeuw B., Dissociating effects of aging and genetic risk of sporadic Alzheimer’s disease on path integration. Neurobiol. Aging 131, 170–181 (2023). PubMed

Winter S. S., Clark B. J., Taube J. S., Disruption of the head direction cell network impairs the parahippocampal grid cell signal. Science 347, 870–874 (2015). PubMed PMC

Ma Y., Yu L., Olah M., Smith R., Oatman S. R., Allen M., Pishva E., Zhang B., Menon V., Ertekin-Taner N., Lunnon K., Bennett D. A., Klein H., Jager P. L. D., Epigenomic features related to microglia are associated with attenuated effect of PubMed PMC

Angelopoulou E., Paudel Y. N., Papageorgiou S. G., Piperi C., APOE genotype and Alzheimer’s disease: The influence of lifestyle and environmental factors. ACS Chem. Nerosci. 12, 2749–2764 (2021). PubMed

Marks J. D., Syrjanen J. A., Graff-Radford J., Petersen R. C., Machulda M. M., Campbell M. R., Algeciras-Schimnich A., Lowe V., Knopman D. S., Jack C. R., Vemuri P., Mielke M. M., Initiative A. D. N., Comparison of plasma neurofilament light and total tau as neurodegeneration markers: Associations with cognitive and neuroimaging outcomes. Alzheimers Res. Ther. 13, 199 (2021). PubMed PMC

Arranz J., Zhu N., Rubio-Guerra S., Rodríguez-Baz Í., Ferrer R., Carmona-Iragui M., Barroeta I., Illán-Gala I., Santos-Santos M., Fortea J., Lleó A., Tondo M., Alcolea D., Diagnostic performance of plasma pTau PubMed PMC

Moore E. E., Hohman T. J., Badami F. S., Pechman K. R., Osborn K. E., Acosta L. M. Y., Bell S. P., Babicz M. A., Gifford K. A., Anderson A. W., Goldstein L. E., Blennow K., Zetterberg H., Jefferson A. L., Neurofilament relates to white matter microstructure in older adults. Neurobiol. Aging 70, 233–241 (2018). PubMed PMC

Bells S., Lefebvre J., Prescott S. A., Dockstader C., Bouffet E., Skocic J., Laughlin S., Mabbott D. J., Changes in white matter microstructure impact cognition by disrupting the ability of neural assemblies to synchronize. J. Neurosci. 37, 8227–8238 (2017). PubMed PMC

Fjell A. M., Westlye L. T., Amlien I. K., Walhovd K. B., Reduced white matter integrity is related to cognitive instability. J. Neurosci. 31, 18060–18072 (2011). PubMed PMC

Maalmi H., Strom A., Petrera A., Hauck S. M., Strassburger K., Kuss O., Zaharia O.-P., Bönhof G. J., Rathmann W., Trenkamp S., Burkart V., Szendroedi J., Ziegler D., Roden M., Herder C., GDS Group , Serum neurofilament light chain: A novel biomarker for early diabetic sensorimotor polyneuropathy. Diabetologia 66, 579–589 (2023). PubMed PMC

Schmid N. S., Ehrensperger M. M., Berres M., Beck I. R., Monsch A. U., The extension of the German CERAD neuropsychological assessment battery with tests assessing subcortical, executive and frontal functions improves accuracy in dementia diagnosis. Dement. Geriatr. Cogn. Dis. Extra 4, 322–334 (2014). PubMed PMC

Nasreddine Z. S., Phillips N. A., Bédirian V., Charbonneau S., Whitehead V., Collin I., Cummings J. L., Chertkow H., The Montreal Cognitive Assessment, MoCA: A brief screening tool for mild cognitive impairment. J. Am. Geriatr. Soc. 53, 695–699 (2005). PubMed

Carson N., Leach L., Murphy K. J., A re-examination of Montreal Cognitive Assessment (MoCA) cutoff scores. Int. J. Geriatr. Psychiatry 33, 379–388 (2018). PubMed

Stoet G., PsyToolkit: A software package for programming psychological experiments using Linux. Behav. Res. Methods 42, 1096–1104 (2010). PubMed

Wrisley D. M., Marchetti G. F., Kuharsky D. K., Whitney S. L., Reliability, internal consistency, and validity of data obtained with the functional gait assessment. Phys. Ther. 84, 906–918 (2004). PubMed

Xiao M.-F., Xu D., Craig M. T., Pelkey K. A., Chien C.-C., Shi Y., Zhang J., Resnick S., Pletnikova O., Salmon D., Brewer J., Edland S., Wegiel J., Tycko B., Savonenko A., Reeves R. H., Troncoso J. C., McBain C. J., Galasko D., Worley P. F., NPTX2 and cognitive dysfunction in Alzheimer’s disease. eLife 6, e23798 (2017). PubMed PMC

A. Gelman, J. B. Carlin, H. S. Stern, D. B. Dunson, A. Vehtari, D. B. Rubin,

D. Phan, N. Pradhan, M. Jankowiak, Composable effects for flexible and accelerated probabilistic programming in NumPyro. arXiv:1912.11554 [stat.ML] (2019).

Ferretti M. T., Iulita M. F., Cavedo E., Chiesa P. A., Dimech A. S., Chadha A. S., Baracchi F., Girouard H., Misoch S., Giacobini E., Depypere H., Hampel H., Women’s Brain Project and the Alzheimer Precision Medicine Initiative , Sex differences in Alzheimer disease — The gateway to precision medicine. Nat. Rev. Neurol. 14, 457–469 (2018). PubMed

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...