Evaluation of Nutritional Quality and Oxidation Stability of Fermented Edible Insects
Status PubMed-not-MEDLINE Language English Country Switzerland Media electronic
Document type Journal Article
Grant support
Programs: P1-0143, P3-0395, P4-0234; Project: J7-3155
The Slovenian Research and Innovation Agency
Project: 21-47159L
Czech Science Foundation
Young Researcher grant: Anja Vehar
The Slovenian Research and Innovation Agency
PubMed
40941044
PubMed Central
PMC12428198
DOI
10.3390/foods14172929
PII: foods14172929
Knihovny.cz E-resources
- Keywords
- amino acids, edible insects, elemental composition, fatty acids, fermentation, nutritional value, oxidation stability,
- Publication type
- Journal Article MeSH
Fermentation, a traditional method for enhancing nutritional value and functionality, has significant potential for improving the quality, safety and acceptability of farmed insect products. In this study, yellow mealworm, house cricket and migratory locust were fermented using Lactobacillus plantarum and a commercial starter culture for 48 h. Samples were analyzed for proximate composition, amino and fatty acid profiles, elemental composition and oxidation stability. Fermentation reduced total dietary fiber in yellow mealworm (33%) and house cricket (12%), and increased non-protein nitrogen (38% and 16%), while total and protein nitrogen remained unaffected. Fatty acid profiles also remained unchanged, whereas the amino acid composition varied depending on the species and fermentation culture. Essential mineral concentrations varied depending on species and fermentation culture Fe (19-23%), K (25%), Mg (12-23%), Mn (36-378%), Na (20-49%) and P (22%) increased, levels of Se (15%), and Cu (16%) decreased, while Zn levels showed inconsistent trends among treatments. Oxidation stability of yellow mealworm (41-42%) and migratory locust (21-29%) decreased, but improved for house cricket (153-167%). Overall, fermentation enhanced the nutritional value of edible insects, although the extent of improvement varied by species and fermentation culture.
Department of Environmental Sciences Jožef Stefan Institute 1000 Ljubljana Slovenia
Emona Nutrition Research and Development Department Jata Emona 1000 Ljubljana Slovenia
See more in PubMed
Ordoñez-Araque R., Egas-Montenegro E. Edible Insects: A Food Alternative for the Sustainable Development of the Planet. Int. J. Gastron. Food Sci. 2021;23:100304. doi: 10.1016/j.ijgfs.2021.100304. DOI
Lange K.W., Nakamura Y. Edible Insects as Future Food: Chances and Challenges. J. Future Foods. 2021;1:38–46. doi: 10.1016/j.jfutfo.2021.10.001. DOI
Antoniadis V., Molla A., Grammenou A., Apostolidis V., Athanassiou C.G., Rumbos C.I., Levizou E. Insect Frass as a Novel Organic Soil Fertilizer for the Cultivation of Spinach (Spinacia oleracea): Effects on Soil Properties, Plant Physiological Parameters, and Nutrient Status. J. Soil Sci. Plant Nutr. 2023;23:5935–5944. doi: 10.1007/s42729-023-01451-9. DOI
Chavez M., Uchanski M. Insect Left-over Substrate as Plant Fertiliser. JIFF. 2021;7:683–694. doi: 10.3920/JIFF2020.0063. DOI
Dobermann D., Swift J.A., Field L.M. Opportunities and Hurdles of Edible Insects for Food and Feed. Nutr. Bull. 2017;42:293–308. doi: 10.1111/nbu.12291. DOI
Kuo C., Fisher B.L. A Literature Review of the Use of Weeds and Agricultural and Food Industry By-Products to Feed Farmed Crickets (Insecta; Orthoptera; Gryllidae) Front. Sustain. Food Syst. 2022;5:810421. doi: 10.3389/fsufs.2021.810421. DOI
Mannaa M., Mansour A., Park I., Lee D.-W., Seo Y.-S. Insect-Based Agri-Food Waste Valorization: Agricultural Applications and Roles of Insect Gut Microbiota. Environ. Sci. Ecotechnology. 2024;17:100287. doi: 10.1016/j.ese.2023.100287. PubMed DOI PMC
Ojha S., Bußler S., Schlüter O.K. Food Waste Valorisation and Circular Economy Concepts in Insect Production and Processing. Waste Manag. 2020;118:600–609. doi: 10.1016/j.wasman.2020.09.010. PubMed DOI
Varelas V. Food Wastes as a Potential New Source for Edible Insect Mass Production for Food and Feed: A Review. Fermentation. 2019;5:81. doi: 10.3390/fermentation5030081. DOI
Čičková H., Newton G.L., Lacy R.C., Kozánek M. The Use of Fly Larvae for Organic Waste Treatment. Waste Manag. 2015;35:68–80. doi: 10.1016/j.wasman.2014.09.026. PubMed DOI
Imathiu S. Benefits and Food Safety Concerns Associated with Consumption of Edible Insects. NFS J. 2020;18:1–11. doi: 10.1016/j.nfs.2019.11.002. DOI
Oonincx D.G.A.B., De Boer I.J.M. Environmental Impact of the Production of Mealworms as a Protein Source for Humans—A Life Cycle Assessment. PLoS ONE. 2012;7:e51145. doi: 10.1371/journal.pone.0051145. PubMed DOI PMC
Smetana S., Schmitt E., Mathys A. Sustainable Use of Hermetia illucens Insect Biomass for Feed and Food: Attributional and Consequential Life Cycle Assessment. Resour. Conserv. Recycl. 2019;144:285–296. doi: 10.1016/j.resconrec.2019.01.042. DOI
Van Broekhoven S., Oonincx D.G.A.B., Van Huis A., Van Loon J.J.A. Growth Performance and Feed Conversion Efficiency of Three Edible Mealworm Species (Coleoptera: Tenebrionidae) on Diets Composed of Organic by-Products. J. Insect Physiol. 2015;73:1–10. doi: 10.1016/j.jinsphys.2014.12.005. PubMed DOI
Commission Implementing Regulation (EU) 2021/882 of 1 June 2021 Authorising the Placing on the Market of Dried Tenebrio molitor Larva as a Novel Food under Regulation (EU) 2015/2283 of the European Parliament and of the Council, and Amending Commission Implementing Regulation (EU) 2017/2470. European Union; Brussels, Belgium: 2021. Commission Regulation 2021/882.
Commission Implementing Regulation (EU) 2022/169 of 8 February 2022 Authorising the Placing on the Market of Frozen, Dried and Powder Forms of Yellow Mealworm (Tenebrio molitor Larva) as a Novel Food under Regulation (EU) 2015/2283 of the European Parliament and of the Council, and Amending Commission Implementing Regulation (EU) 2017/2470. European Union; Brussels, Belgium: 2022. Commission Regulation 2022/169.
Commission Implementing Regulation (EU) 2025/89 of 20 January 2025 Authorising the Placing on the Market of UV-Treated Powder of Whole Tenebrio molitor Larvae (Yellow mealworm) as a Novel Food and Amending Implementing Regulation (EU) 2017/2470. European Union; Brussels, Belgium: 2025. Commission Regulation 2025/89.
Commission Implementing Regulation (EU) 2021/1975 of 12 November 2021 Authorising the Placing on the Market of Frozen, Dried and Powder Forms of Locusta migratoria as a Novel Food under Regulation (EU) 2015/2283 of the European Parliament and of the Council and Amending Commission Implementing Regulation (EU) 2017/2470. European Union; Brussels, Belgium: 2021. Commission Regulation 2021/1975.
Commission Implementing Regulation (EU) 2022/188 of 10 February 2022 Authorising the Placing on the Market of Frozen, Dried and Powder Forms of Acheta domesticus as a Novel Food under Regulation (EU) 2015/2283 of the European Parliament and of the Council, and Amending Commission Implementing Regulation (EU) 2017/2470. European Union; Brussels, Belgium: 2022. Commission Regulation 2022/188.
Commission Implementing Regulation (EU) 2023/5 of 3 January 2023 Authorising the Placing on the Market of Acheta domesticus (House Cricket) Partially Defatted Powder as a Novel Food and Amending Implementing Regulation (EU) 2017/2470. European Union; Brussels, Belgium: 2023. Commission Regulation 2023/5.
Commission Implementing Regulation (EU) 2023/58 of 5 January 2023 Authorising the Placing on the Market of the Frozen, Paste, Dried and Powder Forms of Alphitobius diaperinus Larvae (Lesser Mealworm) as a Novel Food and Amending Implementing Regulation (EU) 2017/2470. European Union; Brussels, Belgium: 2023. Commission Regulation 2023/58.
Commission Regulation (EU) 2021/1372 of 17 August 2021 Amending Annex IV to Regulation (EC) No 999/2001 of the European Parliament and of the Council as Regards the Prohibition to Feed Non-Ruminant Farmed Animals, Other than Fur Animals, with Protein Derived from Animals. European Union; Brussels, Belgium: 2021. Commission Regulation 2021/1372.
Olivadese M., Dindo M.L. Edible Insects: A Historical and Cultural Perspective on Entomophagy with a Focus on Western Societies. Insects. 2023;14:690. doi: 10.3390/insects14080690. PubMed DOI PMC
Kröger T., Dupont J., Büsing L., Fiebelkorn F. Acceptance of Insect-Based Food Products in Western Societies: A Systematic Review. Front. Nutr. 2022;8:759885. doi: 10.3389/fnut.2021.759885. PubMed DOI PMC
Rehman N., Ogrinc N. Consumer Perceptions and Acceptance of Edible Insects in Slovenia. Foods. 2024;13:2629. doi: 10.3390/foods13162629. PubMed DOI PMC
Borremans A., Lenaerts S., Crauwels S., Lievens B., Van Campenhout L. Marination and Fermentation of Yellow Mealworm Larvae (Tenebrio molitor) Food Control. 2018;92:47–52. doi: 10.1016/j.foodcont.2018.04.036. DOI
Hernández-Álvarez A.-J., Mondor M., Piña-Domínguez I.-A., Sánchez-Velázquez O.-A., Melgar Lalanne G. Drying Technologies for Edible Insects and Their Derived Ingredients. Dry. Technol. 2021;39:1991–2009. doi: 10.1080/07373937.2021.1915796. DOI
Melgar-Lalanne G., Hernández-Álvarez A.-J., Salinas-Castro A. Edible Insects Processing: Traditional and Innovative Technologies. Compr. Rev. Food Sci. Food Saf. 2019;18:1166–1191. doi: 10.1111/1541-4337.12463. PubMed DOI
Nyangena D.N., Mutungi C., Imathiu S., Kinyuru J. Effects of Traditional Processing Techniques on the Nutritional and Microbiological Quality of Four Edible Insect Species Used for Food and Feed in East Africa. Foods. 2020;9:574. doi: 10.3390/foods9050574. PubMed DOI PMC
Castro-López C., Santiago-López L., Vallejo-Cordoba B., González-Córdova A.F., Liceaga A.M., García H.S., Hernández-Mendoza A. An Insight to Fermented Edible Insects: A Global Perspective and Prospective. Food Res. Int. 2020;137:109750. doi: 10.1016/j.foodres.2020.109750. PubMed DOI
Di Cagno R., Coda R., De Angelis M., Gobbetti M. Exploitation of Vegetables and Fruits through Lactic Acid Fermentation. Food Microbiol. 2013;33:1–10. doi: 10.1016/j.fm.2012.09.003. PubMed DOI
Gaggia F., Di Gioia D., Baffoni L., Biavati B. The Role of Protective and Probiotic Cultures in Food and Feed and Their Impact in Food Safety. Trends Food Sci. Technol. 2011;22:S58–S66. doi: 10.1016/j.tifs.2011.03.003. DOI
Kewuyemi Y.O., Kesa H., Chinma C.E., Adebo O.A. Fermented Edible Insects for Promoting Food Security in Africa. Insects. 2020;11:283. doi: 10.3390/insects11050283. PubMed DOI PMC
An B., Sam C., Dries V., Ruben S., Christel V., Mik V., Bart L., Leen V. Comparison of Six Commercial Meat Starter Cultures for the Fermentation of Yellow Mealworm (Tenebrio molitor) Paste. Microorganisms. 2019;7:540. doi: 10.3390/microorganisms7110540. PubMed DOI PMC
Cho J.-H., Zhao H.-L., Kim J.-S., Kim S.-H., Chung C.-H. Characteristics of Fermented Seasoning Sauces Using Tenebrio molitor Larvae. Innov. Food Sci. Emerg. Technol. 2018;45:186–195. doi: 10.1016/j.ifset.2017.10.010. DOI
Mendoza-Salazar A., Santiago-López L., Torres-Llanez M.J., Hernández-Mendoza A., Vallejo-Cordoba B., Liceaga A.M., González-Córdova A.F. In Vitro Antioxidant and Antihypertensive Activity of Edible Insects Flours (Mealworm and Grasshopper) Fermented with Lactococcus lactis Strains. Fermentation. 2021;7:153. doi: 10.3390/fermentation7030153. DOI
Pérez-Rodríguez E., Ibarra-Herrera C.C., Pérez-Carrillo E. Effect of Incorporation of Solid-State Fermented Edible Insects Tenebrio molitor and Sphenarium purpurascens with Aspergillus oryzae in the Elaboration of Bread. LWT. 2023;184:115003. doi: 10.1016/j.lwt.2023.115003. DOI
Hadj Saadoun J., Luparelli A.V., Caligiani A., Macavei L.I., Maistrello L., Neviani E., Galaverna G., Sforza S., Lazzi C. Antimicrobial Biomasses from Lactic Acid Fermentation of Black Soldier Fly Prepupae and Related By-Products. Microorganisms. 2020;8:1785. doi: 10.3390/microorganisms8111785. PubMed DOI PMC
Liu H., Yang X., Mai L., Lin J., Zhang L., Wang D., Li Q. Comparative Proteomic Analysis of Bacillus subtilis and Aspergillus niger in Black Soldier Fly Co-Fermentation. Fermentation. 2022;8:593. doi: 10.3390/fermentation8110593. DOI
Meng L., Ma L., Xu J., Rong K., Peng N., Zhao S. Effect of Enzyme-Assisted Fermentation on Quality, Safety, and Microbial Community of Black Soldier Fly Larvae (Hermetia illucens L.) as a Novel Protein Source. Food Res. Int. 2023;174:113624. doi: 10.1016/j.foodres.2023.113624. PubMed DOI
Liu H., Yang X., Yu X., Lin J., Peng S., Li Q., Yang Q., Wang D., Li Q. Untargeted Metabolomics and PacBio Analysis on Bioactive Components and Microbial Community in Co-Fermentation of Black Soldier Fly Larva. Food Res. Int. 2024;197:115304. doi: 10.1016/j.foodres.2024.115304. PubMed DOI
Kittibunchakul S., Whanmek K., Santivarangkna C. Physicochemical, Microbiological and Nutritional Quality of Fermented Cricket (Acheta domesticus) Paste. LWT. 2023;189:115444. doi: 10.1016/j.lwt.2023.115444. DOI
Vasilica B.B., Chiș M.S., Alexa E., Pop C., Păucean A., Man S., Igual M., Haydee K.M., Dalma K.E., Stănilă S., et al. The Impact of Insect Flour on Sourdough Fermentation-Fatty Acids, Amino-Acids, Minerals and Volatile Profile. Insects. 2022;13:576. doi: 10.3390/insects13070576. PubMed DOI PMC
Jamnik P., Mahnič N., Ekselenski S., Pogačnik da Silva L., Čadež N., Membrino V., Poklar Ulrih N., Plateis Z., Toplak N., Koren S., et al. Microbial and Biochemical Characterisation of Fermented House Crickets (Acheta domesticus) and Mealworm Larvae (Tenebrio molitor) J. Insects Food Feed. 2025;1:1–21. doi: 10.1163/23524588-bja10246. DOI
AOAC . Official Methods of Analysis of AOAC International. 16th ed. AOAC International; Washington, DC, USA: 1997.
DeVries J.W., Greene G.W., Payne A., Zbylut S., Scholl P.F., Wehling P., Evers J.M., Moore J.C. Non-Protein Nitrogen Determination: A Screening Tool for Nitrogenous Compound Adulteration of Milk Powder. Int. Dairy J. 2017;68:46–51. doi: 10.1016/j.idairyj.2016.12.003. DOI
Mihaly Cozmuta A., Nicula C., Peter A., Mihaly Cozmuta L., Nartea A., Kuhalskaya A., Pacetti D., Silvi S., Fiorini D., Pruteanu L. Cricket and Yellow Mealworm Powders Promote Higher Bioaccessible Fractions of Mineral Elements in Functional Bread. J. Funct. Foods. 2022;99:105310. doi: 10.1016/j.jff.2022.105310. DOI
FAO . In: Food Energy: Methods of Analysis and Conversion Factors. FAO, editor. Food and Agriculture Organization of the United Nations; Rome, Italy: 2003. Report of a Technical Workshop, Rome, Italy, 3–6 December 2002. FAO Food and Nutrition Paper.
Chen J., Liu H. Nutritional Indices for Assessing Fatty Acids: A Mini-Review. Int. J. Mol. Sci. 2020;21:5695. doi: 10.3390/ijms21165695. PubMed DOI PMC
FAO . Dietary Protein Quality Evaluation in Human Nutrition. Food and Agriculture Organization of the United Nations; Rome, Italy: 2013. Report of an FAO Expert Consultation [on Protein Quality Evaluation in Human Nutrition], 31 March–2 April, 2011, Auckland, New Zealand. FAO Food and Nutrition Paper.
Vehar A., Potočnik D., Strojnik L., Zuliani T., Heath D., Mencin M., Vrhovšek U., Škvorová P., Kouřimská L., Kulma M., et al. Nutritional Composition of Farmed Insects: Impact of Species, Developmental Stage, and Sex. J. Insects Food Feed. 2025:1–23. doi: 10.1163/23524588-bja10234. DOI
Carnesecchi E., Mostrag A., Ciacci A., Roncaglioni A., Tarkhov A., Gibin D., Sartori L., Benfenati E., Yang C., Dorne J.L.C.M. OpenFoodTox: EFSA’s Chemical Hazards Database. European Food Safety Authority; Parma, Italy: 2023.
Khatun H., Claes J., Smets R., De Winne A., Akhtaruzzaman M., Van Der Borght M. Characterization of Freeze-Dried, Oven-Dried and Blanched House Crickets (Acheta domesticus) and Jamaican Field Crickets (Gryllus assimilis) by Means of Their Physicochemical Properties and Volatile Compounds. Eur. Food Res. Technol. 2021;247:1291–1305. doi: 10.1007/s00217-021-03709-x. DOI
Kulma M., Kouřimská L., Plachý V., Božik M., Adámková A., Vrabec V. Effect of Sex on the Nutritional Value of House Cricket, Acheta domestica L. Food Chem. 2019;272:267–272. doi: 10.1016/j.foodchem.2018.08.049. PubMed DOI
Messina C.M., Gaglio R., Morghese M., Tolone M., Arena R., Moschetti G., Santulli A., Francesca N., Settanni L. Microbiological Profile and Bioactive Properties of Insect Powders Used in Food and Feed Formulations. Foods. 2019;8:400. doi: 10.3390/foods8090400. PubMed DOI PMC
Yi L., Lakemond C.M.M., Sagis L.M.C., Eisner-Schadler V., Van Huis A., Van Boekel M.A.J.S. Extraction and Characterisation of Protein Fractions from Five Insect Species. Food Chem. 2013;141:3341–3348. doi: 10.1016/j.foodchem.2013.05.115. PubMed DOI
Christensen P., Glitsø V., Pettersson D., Wischmann B. Fibre Degrading Enzymes and Lactobacillus plantarum Influence Liquid Feed Characteristics and the Solubility of Fibre Components and Dry Matter in Vitro. Livest. Sci. 2007;109:100–103. doi: 10.1016/j.livsci.2007.01.097. DOI
Yin H., Zhong Y., Xia S., Hu J., Nie S., Xiong T., Xie M. Effects of Fermentation with Lactobacillus plantarum NCU137 on Nutritional, Sensory and Stability Properties of Coix (Coix Lachryma-jobi L.) Seed. Food Chem. 2020;314:126037. doi: 10.1016/j.foodchem.2019.126037. PubMed DOI
Yu Q., Xu J., Li M., Xi Y., Sun H., Xie Y., Cheng Q., Li P., Chen C., Yang F., et al. Synergistic Effects of Ferulic Acid Esterase-producing Lactic Acid Bacteria, Cellulase and Xylanase on the Fermentation Characteristics, Fibre and Nitrogen Components and Microbial Community Structure of Broussonetia papyrifera during Ensiling. J. Sci. Food Agric. 2024;104:3543–3558. doi: 10.1002/jsfa.13239. PubMed DOI
Huang G., Su D., Lee Y., Zou X., Dong L., Deng M., Zhang R., Huang F., Zhang M. Accumulation of Water-Soluble Polysaccharides during Lychee Pulp Fermentation with Lactiplantibacillus plantarum Involves Endoglucanase Expression. J. Agric. Food Chem. 2025;73:3669–3679. doi: 10.1021/acs.jafc.4c08859. PubMed DOI
Dreassi E., Cito A., Zanfini A., Materozzi L., Botta M., Francardi V. Dietary Fatty Acids Influence the Growth and Fatty Acid Composition of the Yellow Mealworm Tenebrio molitor (Coleoptera: Tenebrionidae) Lipids. 2017;52:285–294. doi: 10.1007/s11745-016-4220-3. PubMed DOI
Finke M.D. Complete Nutrient Composition of Commercially Raised Invertebrates Used as Food for Insectivores. Zoo Biol. 2002;21:269–285. doi: 10.1002/zoo.10031. DOI
Finke M.D. Complete Nutrient Content of Four Species of Commercially Available Feeder Insects Fed Enhanced Diets during Growth. Zoo Biol. 2015;34:554–564. doi: 10.1002/zoo.21246. PubMed DOI
Perez-Santaescolastica C., De Pril I., Van De Voorde I., Fraeye I. Fatty Acid and Amino Acid Profiles of Seven Edible Insects: Focus on Lipid Class Composition and Protein Conversion Factors. Foods. 2023;12:4090. doi: 10.3390/foods12224090. PubMed DOI PMC
Simopoulos A.P. The Importance of the Ratio of Omega-6/Omega-3 Essential Fatty Acids. Biomed. Pharmacother. 2002;56:365–379. doi: 10.1016/S0753-3322(02)00253-6. PubMed DOI
Hamułka J., Głąbska D., Guzek D., Białkowska A., Sulich A. Intake of Saturated Fatty Acids Affects Atherogenic Blood Properties in Young, Caucasian, Overweight Women Even without Influencing Blood Cholesterol. Int. J. Environ. Res. Public Health. 2018;15:2530. doi: 10.3390/ijerph15112530. PubMed DOI PMC
Czernichow S., Thomas D., Bruckert E. N-6 Fatty Acids and Cardiovascular Health: A Review of the Evidence for Dietary Intake Recommendations. Br. J. Nutr. 2010;104:788–796. doi: 10.1017/S0007114510002096. PubMed DOI
Milićević D., Vranić D., Mašić Z., Parunović N., Trbović D., Nedeljković-Trailović J., Petrović Z. The Role of Total Fats, Saturated/Unsaturated Fatty Acids and Cholesterol Content in Chicken Meat as Cardiovascular Risk Factors. Lipids Health Dis. 2014;13:42. doi: 10.1186/1476-511X-13-42. PubMed DOI PMC
Lawal K.G., Kavle R.R., Akanbi T.O., Mirosa M., Agyei D. Lipid Nutritional Indices, Regioisomeric Distribution, and Thermal Properties of Tenebrio molitor and Hermetia illucens Larvae Fat. J. Asia-Pac. Entomol. 2022;25:101951. doi: 10.1016/j.aspen.2022.101951. DOI
Ulbricht T.L.V., Southgate D.A.T. Coronary Heart Disease: Seven Dietary Factors. The Lancet. 1991;338:985–992. doi: 10.1016/0140-6736(91)91846-M. PubMed DOI
Santos-Silva J., Bessa R.J.B., Santos-Silva F. Effect of Genotype, Feeding System and Slaughter Weight on the Quality of Light Lambs II. Fatty Acid Composition of Meat. Livest. Prod. Sci. 2002;77:187–194. doi: 10.1016/S0301-6226(02)00059-3. DOI
Breuer U., Harms H. Debaryomyces hansenii—An Extremophilic Yeast with Biotechnological Potential. Yeast. 2006;23:415–437. doi: 10.1002/yea.1374. PubMed DOI
Chaillou S., Champomier-Vergès M.-C., Cornet M., Crutz-Le Coq A.-M., Dudez A.-M., Martin V., Beaufils S., Darbon-Rongère E., Bossy R., Loux V., et al. The Complete Genome Sequence of the Meat-Borne Lactic Acid Bacterium Lactobacillus sakei 23K. Nat. Biotechnol. 2005;23:1527–1533. doi: 10.1038/nbt1160. PubMed DOI
Søndergaard A.K., Stahnke L.H. Growth and Aroma Production by Staphylococcus xylosus, S. carnosus and S. equorum—A Comparative Study in Model Systems. Int. J. Food Microbiol. 2002;75:99–109. doi: 10.1016/S0168-1605(01)00729-2. PubMed DOI
Aleknavičius D., Lukša J., Strazdaitė-Žielienė Ž., Servienė E. The Bacterial Microbiota of Edible Insects Acheta domesticus and Gryllus assimilis Revealed by High Content Analysis. Foods. 2022;11:1073. doi: 10.3390/foods11081073. PubMed DOI PMC
Köhler R., Kariuki L., Lambert C., Biesalski H.K. Protein, Amino Acid and Mineral Composition of Some Edible Insects from Thailand. J. Asia-Pac. Entomol. 2019;22:372–378. doi: 10.1016/j.aspen.2019.02.002. DOI
Škvorová P., Kulma M., Božik M., Kurečka M., Plachý V., Slavíková D., Šebelová K., Kouřimská L. Evaluation of Rapeseed Cake as a Protein Substitute in the Feed of Edible Crickets: A Case Study Using Gryllus assimilis. Food Chem. 2024;441:138254. doi: 10.1016/j.foodchem.2023.138254. PubMed DOI
Araújo R.R.S., Fagundes M.M.A., Viana A.M.F., Paulino A.H.S., Silva M.E., Santos E.M. Protein Quality Evaluation in Vivo of Cricket Flour (Gryllus assimilis) Reared in Brazil. J. Insects Food Feed. 2024;8:409–416. doi: 10.3920/JIFF2021.0096. DOI
Belghit I., Lock E.-J., Fumière O., Lecrenier M.-C., Renard P., Dieu M., Berntssen M.H.G., Palmblad M., Rasinger J.D. Species-Specific Discrimination of Insect Meals for Aquafeeds by Direct Comparison of Tandem Mass Spectra. Animals. 2019;9:222. doi: 10.3390/ani9050222. PubMed DOI PMC
Boulos S., Tännler A., Nyström L. Nitrogen-to-Protein Conversion Factors for Edible Insects on the Swiss Market: T. molitor, A. domesticus, and L. migratoria. Front. Nutr. 2020;7:89. doi: 10.3389/fnut.2020.00089. PubMed DOI PMC
Finke M.D. Estimate of Chitin in Raw Whole Insects. Zoo Biol. 2007;26:105–115. doi: 10.1002/zoo.20123. PubMed DOI
Hussain I., Khan S., Sultan A., Chand N., Khan R., Alam W., Ahmad N. Mealworm (Tenebrio molitor) as Potential Alternative Source of Protein Supplementation in Broiler. Int. J. Biosci. 2017;10:255–262. doi: 10.12692/ijb/10.4.255-262. DOI
Janssen R.H., Vincken J.-P., Van Den Broek L.A.M., Fogliano V., Lakemond C.M.M. Nitrogen-to-Protein Conversion Factors for Three Edible Insects: Tenebrio molitor, Alphitobius diaperinus, and Hermetia illucens. J. Agric. Food Chem. 2017;65:2275–2278. doi: 10.1021/acs.jafc.7b00471. PubMed DOI PMC
Lampová B., Kopecká A., Šmíd P., Kulma M., Kurečka M., Ogrinc N., Heath D., Kouřimská L., Doskočil I. Evaluating Protein Quality in Edible Insects: A Comparative Analysis of House Cricket, Yellow Mealworm, and Migratory Locust Using DIAAS Methodologies. LWT. 2024;213:117062. doi: 10.1016/j.lwt.2024.117062. DOI
Nakagaki B.J., Sunde M.L., Defoliart G.R. Protein Quality of the House Cricket, Acheta domesticus, When Fed to Broiler Chicks. Poult. Sci. 1987;66:1367–1371. doi: 10.3382/ps.0661367. DOI
Ritvanen T., Pastell H., Welling A., Raatikainen M. The Nitrogen-to-Protein Conversion Factor of Two Cricket Species—Acheta domesticus and Gryllus bimaculatus. AFSci. 2020;29:1–5. doi: 10.23986/afsci.89101. DOI
Hughes A.L. Evolutionary Conservation of Amino Acid Composition in Paralogous Insect Vitellogenins. Gene. 2010;467:35–40. doi: 10.1016/j.gene.2010.07.007. PubMed DOI PMC
Meyer-Rochow V.B., Gahukar R.T., Ghosh S., Jung C. Chemical Composition, Nutrient Quality and Acceptability of Edible Insects Are Affected by Species, Developmental Stage, Gender, Diet, and Processing Method. Foods. 2021;10:1036. doi: 10.3390/foods10051036. PubMed DOI PMC
Oonincx D.G.A.B., Finke M.D. Nutritional Value of Insects and Ways to Manipulate Their Composition. JIFF. 2021;7:639–659. doi: 10.3920/JIFF2020.0050. DOI
Hwang H., Lee J.-H. Characterization of Arginine Catabolism by Lactic Acid Bacteria Isolated from Kimchi. Molecules. 2018;23:3049. doi: 10.3390/molecules23113049. PubMed DOI PMC
Novák L., Zubáčová Z., Karnkowska A., Kolisko M., Hroudová M., Stairs C.W., Simpson A.G.B., Keeling P.J., Roger A.J., Čepička I., et al. Arginine Deiminase Pathway Enzymes: Evolutionary History in Metamonads and Other Eukaryotes. BMC Evol. Biol. 2016;16:197. doi: 10.1186/s12862-016-0771-4. PubMed DOI PMC
Hambræus L. Reference Module in Biomedical Sciences. Elsevier; Amsterdam, The Netherlands: 2014. Protein and Amino Acids in Human Nutrition; p. B9780128012383000283.
Machado I., Priede A.S., Rodríguez M.C., Heath D., Heath E., Kouřimská L., Kulma M., Bettmer J., Montes-Bayón M. Bioaccessibility of Trace Elements and Fe and Al Endogenic Nanoparticles in Farmed Insects: Pursuing Quality Sustainable Food. Food Chem. 2024;458:140229. doi: 10.1016/j.foodchem.2024.140229. PubMed DOI
Haque M.M., Hossain N., Jolly Y.N., Tareq S.M. Probabilistic Health Risk Assessment of Toxic Metals in Chickens from the Largest Production Areas of Dhaka, Bangladesh. Environ. Sci. Pollut. Res. 2021;28:51329–51341. doi: 10.1007/s11356-021-13534-0. PubMed DOI
Chiş M.S., Păucean A., Man S.M., Vodnar D.C., Teleky B.-E., Pop C.R., Stan L., Borsai O., Kadar C.B., Urcan A.C., et al. Quinoa Sourdough Fermented with Lactobacillus plantarum ATCC 8014 Designed for Gluten-Free Muffins—A Powerful Tool to Enhance Bioactive Compounds. Appl. Sci. 2020;10:7140. doi: 10.3390/app10207140. DOI
Lau N., Hummel J., Kramer E., Hünerberg M. Fermentation of Liquid Feed with Lactic Acid Bacteria Reduces Dry Matter Losses, Lysine Breakdown, Formation of Biogenic Amines, and Phytate-Phosphorus. Transl. Anim. Sci. 2022;6:txac007. doi: 10.1093/tas/txac007. PubMed DOI PMC
The European Parliament and the Council . Directive 2002/32/EC of the European Parliament and of the Council of 7 May 2002 on Undesirable Substances in Animal Feed. The European Parliament and the Council; Strasbourg, France: 2002.
Hur S.J., Lee S.Y., Kim Y.-C., Choi I., Kim G.-B. Effect of Fermentation on the Antioxidant Activity in Plant-Based Foods. Food Chem. 2014;160:346–356. doi: 10.1016/j.foodchem.2014.03.112. PubMed DOI
Feng L., Tang N., Liu R., Gong M., Wang Z., Guo Y., Wang Y., Zhang Y., Chang M. The Relationship between Flavor Formation, Lipid Metabolism, and Microorganisms in Fermented Fish Products. Food Funct. 2021;12:5685–5702. doi: 10.1039/D1FO00692D. PubMed DOI
Slaný O., Klempová T., Cibulková Z., Marcinčák S., Shapaval V., Čertík M. Evaluation of Stability and Quality of Bioproducts Derived from Solid-state Fermentation of Wheat Bran Using Mortierella alpina. J. Food Sci. 2025;90:e70188. doi: 10.1111/1750-3841.70188. PubMed DOI
Nassu R.T., Gonçalves L.A.G., Pereira Da Silva M.A.A., Beserra F.J. Oxidative Stability of Fermented Goat Meat Sausage with Different Levels of Natural Antioxidant. Meat Sci. 2003;63:43–49. doi: 10.1016/S0309-1740(02)00051-7. PubMed DOI
Borremans A., Smets R., Van Campenhout L. Fermentation Versus Meat Preservatives to Extend the Shelf Life of Mealworm (Tenebrio molitor) Paste for Feed and Food Applications. Front. Microbiol. 2020;11:1510. doi: 10.3389/fmicb.2020.01510. PubMed DOI PMC
Bernardo Y.A.A., Conte-Junior C.A. Oxidative Stability in Edible Insects: Where Is the Knowledge Frontier? Trends Food Sci. Technol. 2024;148:104518. doi: 10.1016/j.tifs.2024.104518. DOI
Ojha S., Bußler S., Psarianos M., Rossi G., Schlüter O.K. Edible Insect Processing Pathways and Implementation of Emerging Technologies. JIFF. 2021;7:877–900. doi: 10.3920/JIFF2020.0121. DOI
Keil C., Grebenteuch S., Kröncke N., Kulow F., Pfeif S., Kanzler C., Rohn S., Boeck G., Benning R., Haase H. Systematic Studies on the Antioxidant Capacity and Volatile Compound Profile of Yellow Mealworm Larvae (T. molitor L.) under Different Drying Regimes. Insects. 2022;13:166. doi: 10.3390/insects13020166. PubMed DOI PMC