• This record comes from PubMed

Evaluation of Nutritional Quality and Oxidation Stability of Fermented Edible Insects

. 2025 Aug 22 ; 14 (17) : . [epub] 20250822

Status PubMed-not-MEDLINE Language English Country Switzerland Media electronic

Document type Journal Article

Grant support
Programs: P1-0143, P3-0395, P4-0234; Project: J7-3155 The Slovenian Research and Innovation Agency
Project: 21-47159L Czech Science Foundation
Young Researcher grant: Anja Vehar The Slovenian Research and Innovation Agency

Fermentation, a traditional method for enhancing nutritional value and functionality, has significant potential for improving the quality, safety and acceptability of farmed insect products. In this study, yellow mealworm, house cricket and migratory locust were fermented using Lactobacillus plantarum and a commercial starter culture for 48 h. Samples were analyzed for proximate composition, amino and fatty acid profiles, elemental composition and oxidation stability. Fermentation reduced total dietary fiber in yellow mealworm (33%) and house cricket (12%), and increased non-protein nitrogen (38% and 16%), while total and protein nitrogen remained unaffected. Fatty acid profiles also remained unchanged, whereas the amino acid composition varied depending on the species and fermentation culture. Essential mineral concentrations varied depending on species and fermentation culture Fe (19-23%), K (25%), Mg (12-23%), Mn (36-378%), Na (20-49%) and P (22%) increased, levels of Se (15%), and Cu (16%) decreased, while Zn levels showed inconsistent trends among treatments. Oxidation stability of yellow mealworm (41-42%) and migratory locust (21-29%) decreased, but improved for house cricket (153-167%). Overall, fermentation enhanced the nutritional value of edible insects, although the extent of improvement varied by species and fermentation culture.

See more in PubMed

Ordoñez-Araque R., Egas-Montenegro E. Edible Insects: A Food Alternative for the Sustainable Development of the Planet. Int. J. Gastron. Food Sci. 2021;23:100304. doi: 10.1016/j.ijgfs.2021.100304. DOI

Lange K.W., Nakamura Y. Edible Insects as Future Food: Chances and Challenges. J. Future Foods. 2021;1:38–46. doi: 10.1016/j.jfutfo.2021.10.001. DOI

Antoniadis V., Molla A., Grammenou A., Apostolidis V., Athanassiou C.G., Rumbos C.I., Levizou E. Insect Frass as a Novel Organic Soil Fertilizer for the Cultivation of Spinach (Spinacia oleracea): Effects on Soil Properties, Plant Physiological Parameters, and Nutrient Status. J. Soil Sci. Plant Nutr. 2023;23:5935–5944. doi: 10.1007/s42729-023-01451-9. DOI

Chavez M., Uchanski M. Insect Left-over Substrate as Plant Fertiliser. JIFF. 2021;7:683–694. doi: 10.3920/JIFF2020.0063. DOI

Dobermann D., Swift J.A., Field L.M. Opportunities and Hurdles of Edible Insects for Food and Feed. Nutr. Bull. 2017;42:293–308. doi: 10.1111/nbu.12291. DOI

Kuo C., Fisher B.L. A Literature Review of the Use of Weeds and Agricultural and Food Industry By-Products to Feed Farmed Crickets (Insecta; Orthoptera; Gryllidae) Front. Sustain. Food Syst. 2022;5:810421. doi: 10.3389/fsufs.2021.810421. DOI

Mannaa M., Mansour A., Park I., Lee D.-W., Seo Y.-S. Insect-Based Agri-Food Waste Valorization: Agricultural Applications and Roles of Insect Gut Microbiota. Environ. Sci. Ecotechnology. 2024;17:100287. doi: 10.1016/j.ese.2023.100287. PubMed DOI PMC

Ojha S., Bußler S., Schlüter O.K. Food Waste Valorisation and Circular Economy Concepts in Insect Production and Processing. Waste Manag. 2020;118:600–609. doi: 10.1016/j.wasman.2020.09.010. PubMed DOI

Varelas V. Food Wastes as a Potential New Source for Edible Insect Mass Production for Food and Feed: A Review. Fermentation. 2019;5:81. doi: 10.3390/fermentation5030081. DOI

Čičková H., Newton G.L., Lacy R.C., Kozánek M. The Use of Fly Larvae for Organic Waste Treatment. Waste Manag. 2015;35:68–80. doi: 10.1016/j.wasman.2014.09.026. PubMed DOI

Imathiu S. Benefits and Food Safety Concerns Associated with Consumption of Edible Insects. NFS J. 2020;18:1–11. doi: 10.1016/j.nfs.2019.11.002. DOI

Oonincx D.G.A.B., De Boer I.J.M. Environmental Impact of the Production of Mealworms as a Protein Source for Humans—A Life Cycle Assessment. PLoS ONE. 2012;7:e51145. doi: 10.1371/journal.pone.0051145. PubMed DOI PMC

Smetana S., Schmitt E., Mathys A. Sustainable Use of Hermetia illucens Insect Biomass for Feed and Food: Attributional and Consequential Life Cycle Assessment. Resour. Conserv. Recycl. 2019;144:285–296. doi: 10.1016/j.resconrec.2019.01.042. DOI

Van Broekhoven S., Oonincx D.G.A.B., Van Huis A., Van Loon J.J.A. Growth Performance and Feed Conversion Efficiency of Three Edible Mealworm Species (Coleoptera: Tenebrionidae) on Diets Composed of Organic by-Products. J. Insect Physiol. 2015;73:1–10. doi: 10.1016/j.jinsphys.2014.12.005. PubMed DOI

Commission Implementing Regulation (EU) 2021/882 of 1 June 2021 Authorising the Placing on the Market of Dried Tenebrio molitor Larva as a Novel Food under Regulation (EU) 2015/2283 of the European Parliament and of the Council, and Amending Commission Implementing Regulation (EU) 2017/2470. European Union; Brussels, Belgium: 2021. Commission Regulation 2021/882.

Commission Implementing Regulation (EU) 2022/169 of 8 February 2022 Authorising the Placing on the Market of Frozen, Dried and Powder Forms of Yellow Mealworm (Tenebrio molitor Larva) as a Novel Food under Regulation (EU) 2015/2283 of the European Parliament and of the Council, and Amending Commission Implementing Regulation (EU) 2017/2470. European Union; Brussels, Belgium: 2022. Commission Regulation 2022/169.

Commission Implementing Regulation (EU) 2025/89 of 20 January 2025 Authorising the Placing on the Market of UV-Treated Powder of Whole Tenebrio molitor Larvae (Yellow mealworm) as a Novel Food and Amending Implementing Regulation (EU) 2017/2470. European Union; Brussels, Belgium: 2025. Commission Regulation 2025/89.

Commission Implementing Regulation (EU) 2021/1975 of 12 November 2021 Authorising the Placing on the Market of Frozen, Dried and Powder Forms of Locusta migratoria as a Novel Food under Regulation (EU) 2015/2283 of the European Parliament and of the Council and Amending Commission Implementing Regulation (EU) 2017/2470. European Union; Brussels, Belgium: 2021. Commission Regulation 2021/1975.

Commission Implementing Regulation (EU) 2022/188 of 10 February 2022 Authorising the Placing on the Market of Frozen, Dried and Powder Forms of Acheta domesticus as a Novel Food under Regulation (EU) 2015/2283 of the European Parliament and of the Council, and Amending Commission Implementing Regulation (EU) 2017/2470. European Union; Brussels, Belgium: 2022. Commission Regulation 2022/188.

Commission Implementing Regulation (EU) 2023/5 of 3 January 2023 Authorising the Placing on the Market of Acheta domesticus (House Cricket) Partially Defatted Powder as a Novel Food and Amending Implementing Regulation (EU) 2017/2470. European Union; Brussels, Belgium: 2023. Commission Regulation 2023/5.

Commission Implementing Regulation (EU) 2023/58 of 5 January 2023 Authorising the Placing on the Market of the Frozen, Paste, Dried and Powder Forms of Alphitobius diaperinus Larvae (Lesser Mealworm) as a Novel Food and Amending Implementing Regulation (EU) 2017/2470. European Union; Brussels, Belgium: 2023. Commission Regulation 2023/58.

Commission Regulation (EU) 2021/1372 of 17 August 2021 Amending Annex IV to Regulation (EC) No 999/2001 of the European Parliament and of the Council as Regards the Prohibition to Feed Non-Ruminant Farmed Animals, Other than Fur Animals, with Protein Derived from Animals. European Union; Brussels, Belgium: 2021. Commission Regulation 2021/1372.

Olivadese M., Dindo M.L. Edible Insects: A Historical and Cultural Perspective on Entomophagy with a Focus on Western Societies. Insects. 2023;14:690. doi: 10.3390/insects14080690. PubMed DOI PMC

Kröger T., Dupont J., Büsing L., Fiebelkorn F. Acceptance of Insect-Based Food Products in Western Societies: A Systematic Review. Front. Nutr. 2022;8:759885. doi: 10.3389/fnut.2021.759885. PubMed DOI PMC

Rehman N., Ogrinc N. Consumer Perceptions and Acceptance of Edible Insects in Slovenia. Foods. 2024;13:2629. doi: 10.3390/foods13162629. PubMed DOI PMC

Borremans A., Lenaerts S., Crauwels S., Lievens B., Van Campenhout L. Marination and Fermentation of Yellow Mealworm Larvae (Tenebrio molitor) Food Control. 2018;92:47–52. doi: 10.1016/j.foodcont.2018.04.036. DOI

Hernández-Álvarez A.-J., Mondor M., Piña-Domínguez I.-A., Sánchez-Velázquez O.-A., Melgar Lalanne G. Drying Technologies for Edible Insects and Their Derived Ingredients. Dry. Technol. 2021;39:1991–2009. doi: 10.1080/07373937.2021.1915796. DOI

Melgar-Lalanne G., Hernández-Álvarez A.-J., Salinas-Castro A. Edible Insects Processing: Traditional and Innovative Technologies. Compr. Rev. Food Sci. Food Saf. 2019;18:1166–1191. doi: 10.1111/1541-4337.12463. PubMed DOI

Nyangena D.N., Mutungi C., Imathiu S., Kinyuru J. Effects of Traditional Processing Techniques on the Nutritional and Microbiological Quality of Four Edible Insect Species Used for Food and Feed in East Africa. Foods. 2020;9:574. doi: 10.3390/foods9050574. PubMed DOI PMC

Castro-López C., Santiago-López L., Vallejo-Cordoba B., González-Córdova A.F., Liceaga A.M., García H.S., Hernández-Mendoza A. An Insight to Fermented Edible Insects: A Global Perspective and Prospective. Food Res. Int. 2020;137:109750. doi: 10.1016/j.foodres.2020.109750. PubMed DOI

Di Cagno R., Coda R., De Angelis M., Gobbetti M. Exploitation of Vegetables and Fruits through Lactic Acid Fermentation. Food Microbiol. 2013;33:1–10. doi: 10.1016/j.fm.2012.09.003. PubMed DOI

Gaggia F., Di Gioia D., Baffoni L., Biavati B. The Role of Protective and Probiotic Cultures in Food and Feed and Their Impact in Food Safety. Trends Food Sci. Technol. 2011;22:S58–S66. doi: 10.1016/j.tifs.2011.03.003. DOI

Kewuyemi Y.O., Kesa H., Chinma C.E., Adebo O.A. Fermented Edible Insects for Promoting Food Security in Africa. Insects. 2020;11:283. doi: 10.3390/insects11050283. PubMed DOI PMC

An B., Sam C., Dries V., Ruben S., Christel V., Mik V., Bart L., Leen V. Comparison of Six Commercial Meat Starter Cultures for the Fermentation of Yellow Mealworm (Tenebrio molitor) Paste. Microorganisms. 2019;7:540. doi: 10.3390/microorganisms7110540. PubMed DOI PMC

Cho J.-H., Zhao H.-L., Kim J.-S., Kim S.-H., Chung C.-H. Characteristics of Fermented Seasoning Sauces Using Tenebrio molitor Larvae. Innov. Food Sci. Emerg. Technol. 2018;45:186–195. doi: 10.1016/j.ifset.2017.10.010. DOI

Mendoza-Salazar A., Santiago-López L., Torres-Llanez M.J., Hernández-Mendoza A., Vallejo-Cordoba B., Liceaga A.M., González-Córdova A.F. In Vitro Antioxidant and Antihypertensive Activity of Edible Insects Flours (Mealworm and Grasshopper) Fermented with Lactococcus lactis Strains. Fermentation. 2021;7:153. doi: 10.3390/fermentation7030153. DOI

Pérez-Rodríguez E., Ibarra-Herrera C.C., Pérez-Carrillo E. Effect of Incorporation of Solid-State Fermented Edible Insects Tenebrio molitor and Sphenarium purpurascens with Aspergillus oryzae in the Elaboration of Bread. LWT. 2023;184:115003. doi: 10.1016/j.lwt.2023.115003. DOI

Hadj Saadoun J., Luparelli A.V., Caligiani A., Macavei L.I., Maistrello L., Neviani E., Galaverna G., Sforza S., Lazzi C. Antimicrobial Biomasses from Lactic Acid Fermentation of Black Soldier Fly Prepupae and Related By-Products. Microorganisms. 2020;8:1785. doi: 10.3390/microorganisms8111785. PubMed DOI PMC

Liu H., Yang X., Mai L., Lin J., Zhang L., Wang D., Li Q. Comparative Proteomic Analysis of Bacillus subtilis and Aspergillus niger in Black Soldier Fly Co-Fermentation. Fermentation. 2022;8:593. doi: 10.3390/fermentation8110593. DOI

Meng L., Ma L., Xu J., Rong K., Peng N., Zhao S. Effect of Enzyme-Assisted Fermentation on Quality, Safety, and Microbial Community of Black Soldier Fly Larvae (Hermetia illucens L.) as a Novel Protein Source. Food Res. Int. 2023;174:113624. doi: 10.1016/j.foodres.2023.113624. PubMed DOI

Liu H., Yang X., Yu X., Lin J., Peng S., Li Q., Yang Q., Wang D., Li Q. Untargeted Metabolomics and PacBio Analysis on Bioactive Components and Microbial Community in Co-Fermentation of Black Soldier Fly Larva. Food Res. Int. 2024;197:115304. doi: 10.1016/j.foodres.2024.115304. PubMed DOI

Kittibunchakul S., Whanmek K., Santivarangkna C. Physicochemical, Microbiological and Nutritional Quality of Fermented Cricket (Acheta domesticus) Paste. LWT. 2023;189:115444. doi: 10.1016/j.lwt.2023.115444. DOI

Vasilica B.B., Chiș M.S., Alexa E., Pop C., Păucean A., Man S., Igual M., Haydee K.M., Dalma K.E., Stănilă S., et al. The Impact of Insect Flour on Sourdough Fermentation-Fatty Acids, Amino-Acids, Minerals and Volatile Profile. Insects. 2022;13:576. doi: 10.3390/insects13070576. PubMed DOI PMC

Jamnik P., Mahnič N., Ekselenski S., Pogačnik da Silva L., Čadež N., Membrino V., Poklar Ulrih N., Plateis Z., Toplak N., Koren S., et al. Microbial and Biochemical Characterisation of Fermented House Crickets (Acheta domesticus) and Mealworm Larvae (Tenebrio molitor) J. Insects Food Feed. 2025;1:1–21. doi: 10.1163/23524588-bja10246. DOI

AOAC . Official Methods of Analysis of AOAC International. 16th ed. AOAC International; Washington, DC, USA: 1997.

DeVries J.W., Greene G.W., Payne A., Zbylut S., Scholl P.F., Wehling P., Evers J.M., Moore J.C. Non-Protein Nitrogen Determination: A Screening Tool for Nitrogenous Compound Adulteration of Milk Powder. Int. Dairy J. 2017;68:46–51. doi: 10.1016/j.idairyj.2016.12.003. DOI

Mihaly Cozmuta A., Nicula C., Peter A., Mihaly Cozmuta L., Nartea A., Kuhalskaya A., Pacetti D., Silvi S., Fiorini D., Pruteanu L. Cricket and Yellow Mealworm Powders Promote Higher Bioaccessible Fractions of Mineral Elements in Functional Bread. J. Funct. Foods. 2022;99:105310. doi: 10.1016/j.jff.2022.105310. DOI

FAO . In: Food Energy: Methods of Analysis and Conversion Factors. FAO, editor. Food and Agriculture Organization of the United Nations; Rome, Italy: 2003. Report of a Technical Workshop, Rome, Italy, 3–6 December 2002. FAO Food and Nutrition Paper.

Chen J., Liu H. Nutritional Indices for Assessing Fatty Acids: A Mini-Review. Int. J. Mol. Sci. 2020;21:5695. doi: 10.3390/ijms21165695. PubMed DOI PMC

FAO . Dietary Protein Quality Evaluation in Human Nutrition. Food and Agriculture Organization of the United Nations; Rome, Italy: 2013. Report of an FAO Expert Consultation [on Protein Quality Evaluation in Human Nutrition], 31 March–2 April, 2011, Auckland, New Zealand. FAO Food and Nutrition Paper.

Vehar A., Potočnik D., Strojnik L., Zuliani T., Heath D., Mencin M., Vrhovšek U., Škvorová P., Kouřimská L., Kulma M., et al. Nutritional Composition of Farmed Insects: Impact of Species, Developmental Stage, and Sex. J. Insects Food Feed. 2025:1–23. doi: 10.1163/23524588-bja10234. DOI

Carnesecchi E., Mostrag A., Ciacci A., Roncaglioni A., Tarkhov A., Gibin D., Sartori L., Benfenati E., Yang C., Dorne J.L.C.M. OpenFoodTox: EFSA’s Chemical Hazards Database. European Food Safety Authority; Parma, Italy: 2023.

Khatun H., Claes J., Smets R., De Winne A., Akhtaruzzaman M., Van Der Borght M. Characterization of Freeze-Dried, Oven-Dried and Blanched House Crickets (Acheta domesticus) and Jamaican Field Crickets (Gryllus assimilis) by Means of Their Physicochemical Properties and Volatile Compounds. Eur. Food Res. Technol. 2021;247:1291–1305. doi: 10.1007/s00217-021-03709-x. DOI

Kulma M., Kouřimská L., Plachý V., Božik M., Adámková A., Vrabec V. Effect of Sex on the Nutritional Value of House Cricket, Acheta domestica L. Food Chem. 2019;272:267–272. doi: 10.1016/j.foodchem.2018.08.049. PubMed DOI

Messina C.M., Gaglio R., Morghese M., Tolone M., Arena R., Moschetti G., Santulli A., Francesca N., Settanni L. Microbiological Profile and Bioactive Properties of Insect Powders Used in Food and Feed Formulations. Foods. 2019;8:400. doi: 10.3390/foods8090400. PubMed DOI PMC

Yi L., Lakemond C.M.M., Sagis L.M.C., Eisner-Schadler V., Van Huis A., Van Boekel M.A.J.S. Extraction and Characterisation of Protein Fractions from Five Insect Species. Food Chem. 2013;141:3341–3348. doi: 10.1016/j.foodchem.2013.05.115. PubMed DOI

Christensen P., Glitsø V., Pettersson D., Wischmann B. Fibre Degrading Enzymes and Lactobacillus plantarum Influence Liquid Feed Characteristics and the Solubility of Fibre Components and Dry Matter in Vitro. Livest. Sci. 2007;109:100–103. doi: 10.1016/j.livsci.2007.01.097. DOI

Yin H., Zhong Y., Xia S., Hu J., Nie S., Xiong T., Xie M. Effects of Fermentation with Lactobacillus plantarum NCU137 on Nutritional, Sensory and Stability Properties of Coix (Coix Lachryma-jobi L.) Seed. Food Chem. 2020;314:126037. doi: 10.1016/j.foodchem.2019.126037. PubMed DOI

Yu Q., Xu J., Li M., Xi Y., Sun H., Xie Y., Cheng Q., Li P., Chen C., Yang F., et al. Synergistic Effects of Ferulic Acid Esterase-producing Lactic Acid Bacteria, Cellulase and Xylanase on the Fermentation Characteristics, Fibre and Nitrogen Components and Microbial Community Structure of Broussonetia papyrifera during Ensiling. J. Sci. Food Agric. 2024;104:3543–3558. doi: 10.1002/jsfa.13239. PubMed DOI

Huang G., Su D., Lee Y., Zou X., Dong L., Deng M., Zhang R., Huang F., Zhang M. Accumulation of Water-Soluble Polysaccharides during Lychee Pulp Fermentation with Lactiplantibacillus plantarum Involves Endoglucanase Expression. J. Agric. Food Chem. 2025;73:3669–3679. doi: 10.1021/acs.jafc.4c08859. PubMed DOI

Dreassi E., Cito A., Zanfini A., Materozzi L., Botta M., Francardi V. Dietary Fatty Acids Influence the Growth and Fatty Acid Composition of the Yellow Mealworm Tenebrio molitor (Coleoptera: Tenebrionidae) Lipids. 2017;52:285–294. doi: 10.1007/s11745-016-4220-3. PubMed DOI

Finke M.D. Complete Nutrient Composition of Commercially Raised Invertebrates Used as Food for Insectivores. Zoo Biol. 2002;21:269–285. doi: 10.1002/zoo.10031. DOI

Finke M.D. Complete Nutrient Content of Four Species of Commercially Available Feeder Insects Fed Enhanced Diets during Growth. Zoo Biol. 2015;34:554–564. doi: 10.1002/zoo.21246. PubMed DOI

Perez-Santaescolastica C., De Pril I., Van De Voorde I., Fraeye I. Fatty Acid and Amino Acid Profiles of Seven Edible Insects: Focus on Lipid Class Composition and Protein Conversion Factors. Foods. 2023;12:4090. doi: 10.3390/foods12224090. PubMed DOI PMC

Simopoulos A.P. The Importance of the Ratio of Omega-6/Omega-3 Essential Fatty Acids. Biomed. Pharmacother. 2002;56:365–379. doi: 10.1016/S0753-3322(02)00253-6. PubMed DOI

Hamułka J., Głąbska D., Guzek D., Białkowska A., Sulich A. Intake of Saturated Fatty Acids Affects Atherogenic Blood Properties in Young, Caucasian, Overweight Women Even without Influencing Blood Cholesterol. Int. J. Environ. Res. Public Health. 2018;15:2530. doi: 10.3390/ijerph15112530. PubMed DOI PMC

Czernichow S., Thomas D., Bruckert E. N-6 Fatty Acids and Cardiovascular Health: A Review of the Evidence for Dietary Intake Recommendations. Br. J. Nutr. 2010;104:788–796. doi: 10.1017/S0007114510002096. PubMed DOI

Milićević D., Vranić D., Mašić Z., Parunović N., Trbović D., Nedeljković-Trailović J., Petrović Z. The Role of Total Fats, Saturated/Unsaturated Fatty Acids and Cholesterol Content in Chicken Meat as Cardiovascular Risk Factors. Lipids Health Dis. 2014;13:42. doi: 10.1186/1476-511X-13-42. PubMed DOI PMC

Lawal K.G., Kavle R.R., Akanbi T.O., Mirosa M., Agyei D. Lipid Nutritional Indices, Regioisomeric Distribution, and Thermal Properties of Tenebrio molitor and Hermetia illucens Larvae Fat. J. Asia-Pac. Entomol. 2022;25:101951. doi: 10.1016/j.aspen.2022.101951. DOI

Ulbricht T.L.V., Southgate D.A.T. Coronary Heart Disease: Seven Dietary Factors. The Lancet. 1991;338:985–992. doi: 10.1016/0140-6736(91)91846-M. PubMed DOI

Santos-Silva J., Bessa R.J.B., Santos-Silva F. Effect of Genotype, Feeding System and Slaughter Weight on the Quality of Light Lambs II. Fatty Acid Composition of Meat. Livest. Prod. Sci. 2002;77:187–194. doi: 10.1016/S0301-6226(02)00059-3. DOI

Breuer U., Harms H. Debaryomyces hansenii—An Extremophilic Yeast with Biotechnological Potential. Yeast. 2006;23:415–437. doi: 10.1002/yea.1374. PubMed DOI

Chaillou S., Champomier-Vergès M.-C., Cornet M., Crutz-Le Coq A.-M., Dudez A.-M., Martin V., Beaufils S., Darbon-Rongère E., Bossy R., Loux V., et al. The Complete Genome Sequence of the Meat-Borne Lactic Acid Bacterium Lactobacillus sakei 23K. Nat. Biotechnol. 2005;23:1527–1533. doi: 10.1038/nbt1160. PubMed DOI

Søndergaard A.K., Stahnke L.H. Growth and Aroma Production by Staphylococcus xylosus, S. carnosus and S. equorum—A Comparative Study in Model Systems. Int. J. Food Microbiol. 2002;75:99–109. doi: 10.1016/S0168-1605(01)00729-2. PubMed DOI

Aleknavičius D., Lukša J., Strazdaitė-Žielienė Ž., Servienė E. The Bacterial Microbiota of Edible Insects Acheta domesticus and Gryllus assimilis Revealed by High Content Analysis. Foods. 2022;11:1073. doi: 10.3390/foods11081073. PubMed DOI PMC

Köhler R., Kariuki L., Lambert C., Biesalski H.K. Protein, Amino Acid and Mineral Composition of Some Edible Insects from Thailand. J. Asia-Pac. Entomol. 2019;22:372–378. doi: 10.1016/j.aspen.2019.02.002. DOI

Škvorová P., Kulma M., Božik M., Kurečka M., Plachý V., Slavíková D., Šebelová K., Kouřimská L. Evaluation of Rapeseed Cake as a Protein Substitute in the Feed of Edible Crickets: A Case Study Using Gryllus assimilis. Food Chem. 2024;441:138254. doi: 10.1016/j.foodchem.2023.138254. PubMed DOI

Araújo R.R.S., Fagundes M.M.A., Viana A.M.F., Paulino A.H.S., Silva M.E., Santos E.M. Protein Quality Evaluation in Vivo of Cricket Flour (Gryllus assimilis) Reared in Brazil. J. Insects Food Feed. 2024;8:409–416. doi: 10.3920/JIFF2021.0096. DOI

Belghit I., Lock E.-J., Fumière O., Lecrenier M.-C., Renard P., Dieu M., Berntssen M.H.G., Palmblad M., Rasinger J.D. Species-Specific Discrimination of Insect Meals for Aquafeeds by Direct Comparison of Tandem Mass Spectra. Animals. 2019;9:222. doi: 10.3390/ani9050222. PubMed DOI PMC

Boulos S., Tännler A., Nyström L. Nitrogen-to-Protein Conversion Factors for Edible Insects on the Swiss Market: T. molitor, A. domesticus, and L. migratoria. Front. Nutr. 2020;7:89. doi: 10.3389/fnut.2020.00089. PubMed DOI PMC

Finke M.D. Estimate of Chitin in Raw Whole Insects. Zoo Biol. 2007;26:105–115. doi: 10.1002/zoo.20123. PubMed DOI

Hussain I., Khan S., Sultan A., Chand N., Khan R., Alam W., Ahmad N. Mealworm (Tenebrio molitor) as Potential Alternative Source of Protein Supplementation in Broiler. Int. J. Biosci. 2017;10:255–262. doi: 10.12692/ijb/10.4.255-262. DOI

Janssen R.H., Vincken J.-P., Van Den Broek L.A.M., Fogliano V., Lakemond C.M.M. Nitrogen-to-Protein Conversion Factors for Three Edible Insects: Tenebrio molitor, Alphitobius diaperinus, and Hermetia illucens. J. Agric. Food Chem. 2017;65:2275–2278. doi: 10.1021/acs.jafc.7b00471. PubMed DOI PMC

Lampová B., Kopecká A., Šmíd P., Kulma M., Kurečka M., Ogrinc N., Heath D., Kouřimská L., Doskočil I. Evaluating Protein Quality in Edible Insects: A Comparative Analysis of House Cricket, Yellow Mealworm, and Migratory Locust Using DIAAS Methodologies. LWT. 2024;213:117062. doi: 10.1016/j.lwt.2024.117062. DOI

Nakagaki B.J., Sunde M.L., Defoliart G.R. Protein Quality of the House Cricket, Acheta domesticus, When Fed to Broiler Chicks. Poult. Sci. 1987;66:1367–1371. doi: 10.3382/ps.0661367. DOI

Ritvanen T., Pastell H., Welling A., Raatikainen M. The Nitrogen-to-Protein Conversion Factor of Two Cricket Species—Acheta domesticus and Gryllus bimaculatus. AFSci. 2020;29:1–5. doi: 10.23986/afsci.89101. DOI

Hughes A.L. Evolutionary Conservation of Amino Acid Composition in Paralogous Insect Vitellogenins. Gene. 2010;467:35–40. doi: 10.1016/j.gene.2010.07.007. PubMed DOI PMC

Meyer-Rochow V.B., Gahukar R.T., Ghosh S., Jung C. Chemical Composition, Nutrient Quality and Acceptability of Edible Insects Are Affected by Species, Developmental Stage, Gender, Diet, and Processing Method. Foods. 2021;10:1036. doi: 10.3390/foods10051036. PubMed DOI PMC

Oonincx D.G.A.B., Finke M.D. Nutritional Value of Insects and Ways to Manipulate Their Composition. JIFF. 2021;7:639–659. doi: 10.3920/JIFF2020.0050. DOI

Hwang H., Lee J.-H. Characterization of Arginine Catabolism by Lactic Acid Bacteria Isolated from Kimchi. Molecules. 2018;23:3049. doi: 10.3390/molecules23113049. PubMed DOI PMC

Novák L., Zubáčová Z., Karnkowska A., Kolisko M., Hroudová M., Stairs C.W., Simpson A.G.B., Keeling P.J., Roger A.J., Čepička I., et al. Arginine Deiminase Pathway Enzymes: Evolutionary History in Metamonads and Other Eukaryotes. BMC Evol. Biol. 2016;16:197. doi: 10.1186/s12862-016-0771-4. PubMed DOI PMC

Hambræus L. Reference Module in Biomedical Sciences. Elsevier; Amsterdam, The Netherlands: 2014. Protein and Amino Acids in Human Nutrition; p. B9780128012383000283.

Machado I., Priede A.S., Rodríguez M.C., Heath D., Heath E., Kouřimská L., Kulma M., Bettmer J., Montes-Bayón M. Bioaccessibility of Trace Elements and Fe and Al Endogenic Nanoparticles in Farmed Insects: Pursuing Quality Sustainable Food. Food Chem. 2024;458:140229. doi: 10.1016/j.foodchem.2024.140229. PubMed DOI

Haque M.M., Hossain N., Jolly Y.N., Tareq S.M. Probabilistic Health Risk Assessment of Toxic Metals in Chickens from the Largest Production Areas of Dhaka, Bangladesh. Environ. Sci. Pollut. Res. 2021;28:51329–51341. doi: 10.1007/s11356-021-13534-0. PubMed DOI

Chiş M.S., Păucean A., Man S.M., Vodnar D.C., Teleky B.-E., Pop C.R., Stan L., Borsai O., Kadar C.B., Urcan A.C., et al. Quinoa Sourdough Fermented with Lactobacillus plantarum ATCC 8014 Designed for Gluten-Free Muffins—A Powerful Tool to Enhance Bioactive Compounds. Appl. Sci. 2020;10:7140. doi: 10.3390/app10207140. DOI

Lau N., Hummel J., Kramer E., Hünerberg M. Fermentation of Liquid Feed with Lactic Acid Bacteria Reduces Dry Matter Losses, Lysine Breakdown, Formation of Biogenic Amines, and Phytate-Phosphorus. Transl. Anim. Sci. 2022;6:txac007. doi: 10.1093/tas/txac007. PubMed DOI PMC

The European Parliament and the Council . Directive 2002/32/EC of the European Parliament and of the Council of 7 May 2002 on Undesirable Substances in Animal Feed. The European Parliament and the Council; Strasbourg, France: 2002.

Hur S.J., Lee S.Y., Kim Y.-C., Choi I., Kim G.-B. Effect of Fermentation on the Antioxidant Activity in Plant-Based Foods. Food Chem. 2014;160:346–356. doi: 10.1016/j.foodchem.2014.03.112. PubMed DOI

Feng L., Tang N., Liu R., Gong M., Wang Z., Guo Y., Wang Y., Zhang Y., Chang M. The Relationship between Flavor Formation, Lipid Metabolism, and Microorganisms in Fermented Fish Products. Food Funct. 2021;12:5685–5702. doi: 10.1039/D1FO00692D. PubMed DOI

Slaný O., Klempová T., Cibulková Z., Marcinčák S., Shapaval V., Čertík M. Evaluation of Stability and Quality of Bioproducts Derived from Solid-state Fermentation of Wheat Bran Using Mortierella alpina. J. Food Sci. 2025;90:e70188. doi: 10.1111/1750-3841.70188. PubMed DOI

Nassu R.T., Gonçalves L.A.G., Pereira Da Silva M.A.A., Beserra F.J. Oxidative Stability of Fermented Goat Meat Sausage with Different Levels of Natural Antioxidant. Meat Sci. 2003;63:43–49. doi: 10.1016/S0309-1740(02)00051-7. PubMed DOI

Borremans A., Smets R., Van Campenhout L. Fermentation Versus Meat Preservatives to Extend the Shelf Life of Mealworm (Tenebrio molitor) Paste for Feed and Food Applications. Front. Microbiol. 2020;11:1510. doi: 10.3389/fmicb.2020.01510. PubMed DOI PMC

Bernardo Y.A.A., Conte-Junior C.A. Oxidative Stability in Edible Insects: Where Is the Knowledge Frontier? Trends Food Sci. Technol. 2024;148:104518. doi: 10.1016/j.tifs.2024.104518. DOI

Ojha S., Bußler S., Psarianos M., Rossi G., Schlüter O.K. Edible Insect Processing Pathways and Implementation of Emerging Technologies. JIFF. 2021;7:877–900. doi: 10.3920/JIFF2020.0121. DOI

Keil C., Grebenteuch S., Kröncke N., Kulow F., Pfeif S., Kanzler C., Rohn S., Boeck G., Benning R., Haase H. Systematic Studies on the Antioxidant Capacity and Volatile Compound Profile of Yellow Mealworm Larvae (T. molitor L.) under Different Drying Regimes. Insects. 2022;13:166. doi: 10.3390/insects13020166. PubMed DOI PMC

Find record

Citation metrics

Loading data ...

Archiving options

Loading data ...