Sensor-Oriented Framework for Underwater Acoustic Signal Classification Using EMD-Wavelet Filtering and Bayesian-Optimized Random Forest
Status PubMed-not-MEDLINE Jazyk angličtina Země Švýcarsko Médium electronic
Typ dokumentu časopisecké články
PubMed
40942765
PubMed Central
PMC12430954
DOI
10.3390/s25175336
PII: s25175336
Knihovny.cz E-zdroje
- Klíčová slova
- bayesian optimization, empirical mode decomposition, feature extraction, non-stationary signal processing, random forest, ship acoustic signal classification, underwater acoustic sensors, wavelet filtering,
- Publikační typ
- časopisecké články MeSH
Ship acoustic signal classification is essential for vessel identification, underwater navigation, and maritime security. Traditional methods struggle with the non-stationary nature and noise of ship acoustic signals, reducing classification accuracy. To address these challenges, we propose an automated pipeline that integrates Empirical Mode Decomposition (EMD), adaptive wavelet filtering, feature selection, and a Bayesian-optimized Random Forest classifier. The framework begins with EMD-based decomposition, where the most informative Intrinsic Mode Functions (IMFs) are selected using Signal-to-Noise Ratio (SNR) analysis. Wavelet filtering is applied to reduce noise, with optimal wavelet parameters determined via SNR and Stein's Unbiased Risk Estimate (SURE) criteria. Features extracted from statistical, frequency domain (FFT), and time-frequency (wavelet) metrics are ranked, and the top 11 most important features are selected for classification. A Bayesian-optimized Random Forest classifier is trained using the extracted features, ensuring optimal hyperparameter selection and reducing computational complexity. The classification results are further enhanced using a majority voting strategy, improving the accuracy of the final object identification. The proposed approach demonstrates high accuracy, improved noise suppression, and robust classification performance. The methodology is scalable, computationally efficient, and suitable for real-time maritime applications.
Zobrazit více v PubMed
Ahmad F., Ansari M., Anwar R., Shahzad B., Ikram A. Deep Learning Based Classification of Underwater Acoustic Signals. Procedia Comput. Sci. 2024;235:1115–1124. doi: 10.1016/j.procs.2024.04.106. DOI
Lokhande S., Malarkodi A., Latha G., Srinivasan S. Autonomous detection, localization and tracking of ships by underwater acoustic sensing using vector sensor array. Appl. Ocean. Res. 2025;154:104389. doi: 10.1016/j.apor.2024.104389. DOI
Li G., Zhang L., Yang H. Adaptive denoising model for ship-radiated noise based on dynamic weighted filtering. Appl. Ocean. Res. 2024;236:115042. doi: 10.1016/j.measurement.2024.115042. DOI
Yao X., Liu S., Chen J., Yan S., Ji F., Liu H., Chen J. Underwater Acoustic Target Classification Using Scattering Transform with Small Sample Size. IEEE Sens. J. 2024;24:25998–26010. doi: 10.1109/JSEN.2024.3419434. DOI
Wu F., Yao H., Wang H. Recognizing the State of Motion by Ship-Radiated Noise Using Time-Frequency Swin-Transformer. IEEE J. Ocean. Eng. 2024;49:667–678. doi: 10.1109/JOE.2024.3369663. DOI
Zhang Y., Zeng Q. MSLEFC: A low-frequency focused underwater acoustic signal classification and analysis system. Eng. Appl. Artif. Intell. 2023;123:106333. doi: 10.1016/j.engappai.2023.106333. DOI
Du L., Liu M., Lv Z., Wang Z., Wang L., Wang G. Classification Method for Ship-Radiated Noise Based on Joint Feature Extraction. Commun. Comput. Inf. Sci. 2024;2036:75–90. doi: 10.1007/978-981-97-0065-3_6. DOI
Nuruddin H., Azizi M.H., Mansor M.N., Ismail S.B., Kamal I.Z. Advancement in Emerging Technologies and Engineering Applications. Springer; Singapore: 2020. Forensic Investigation on the Propulsion Train System for Vibration Induced Phenomenon Onboard a Naval Vessel Using Fast Fourier Transform; pp. 25–32. Lecture Notes in Mechanical Engineering. DOI
Chen L., Luo X., Zhou H. A ship-radiated noise classification method based on domain knowledge embedding and attention mechanism. Eng. Appl. Artif. Intell. 2024;127:107320. doi: 10.1016/j.engappai.2023.107320. DOI
Li D., Liu F., Shen T., Chen L., Yang X., Zhao D. Generalizable Underwater Acoustic Target Recognition Using Feature Extraction Module of Neural Network. Appl. Sci. 2022;12:10804. doi: 10.3390/app122110804. DOI
Tang J., Gao W., Ma E., Sun X., Ma J. Deep Learning Based Underwater Acoustic Target Recognition: Introduce a Recent Temporal 2D Modeling Method. Sensors. 2024;24:1633. doi: 10.3390/s24051633. PubMed DOI PMC
Zhou A., Li X., Zhang W., Zhao C., Ren K., Ma Y., Song J. An attention-based multi-scale convolution network for intelligent underwater acoustic signal recognition. Ocean Eng. 2023;287:115784. doi: 10.1016/j.oceaneng.2023.115784. DOI
Li G., Han Y., Yang H. A new underwater acoustic signal denoising method based on modified uniform phase empirical mode decomposition, hierarchical amplitude-aware permutation entropy, and optimized improved wavelet threshold denoising. Ocean Eng. 2024;293:116629. doi: 10.1016/j.oceaneng.2023.116629. DOI
Jin S.Y., Su Y., Guo C.J., Ma C.Y., Fan Y.X., Tao Z.Y. Intrinsic mode ensembled statistical cepstral coefficients for feature extraction of ship-radiated noise. Appl. Acoust. 2025;227:110255. doi: 10.1016/j.apacoust.2024.110255. DOI
Li Y., Ning F., Jiang X., Yi Y. Feature Extraction of Ship Radiation Signals Based on Wavelet Packet Decomposition and Energy Entropy. Math. Probl. Eng. 2022;2022:8092706. doi: 10.1155/2022/8092706. DOI
Li Y.X., Wang L. A novel noise reduction technique for underwater acoustic signals based on complete ensemble empirical mode decomposition with adaptive noise, minimum mean square variance criterion and least mean square adaptive filter. Def. Technol. 2020;16:543–554. doi: 10.1016/j.dt.2019.07.020. DOI
Yang X., Shao J., Yang S., Wang X., Chen X. Feature Extraction and Classification Recognition of Ship Radiated Noise Based on 2D-ACVMD; Proceedings of the 2023 3rd International Symposium on Computer Technology and Information Science, ISCTIS 2023; Chengdu, China. 7–9 July 2023; pp. 619–623. DOI
Liu D., Yang H., Hou W., Wang B. A Novel Underwater Acoustic Target Recognition Method Based on MFCC and RACNN. Sensors. 2024;24:273. doi: 10.3390/s24010273. PubMed DOI PMC
Hong F., Liu C., Guo L., Chen F., Feng H. Underwater acoustic target recognition with a residual network and the optimized feature extraction method. Appl. Sci. 2021;11:1442. doi: 10.3390/app11041442. DOI
Wang B., Zhang W., Zhu Y., Wu C., Zhang S. An Underwater Acoustic Target Recognition Method Based on AMNet. IEEE Geosci. Remote Sens. Lett. 2023;20:5501105. doi: 10.1109/LGRS.2023.3235659. DOI
Qi P., Yin G., Zhang L. Underwater acoustic target recognition using RCRNN and wavelet-auditory feature. Multimed. Tools Appl. 2024;83:47295–47317. doi: 10.1007/s11042-023-17406-2. DOI
Xu W., Han X., Zhao Y., Wang L., Jia C., Feng S., Han J., Zhang L. Research on Underwater Acoustic Target Recognition Based on a 3D Fusion Feature Joint Neural Network. J. Mar. Sci. Eng. 2024;12:2063. doi: 10.3390/jmse12112063. DOI
Cao Y., Yan J., Sun K., Luo X. Hydroacoustic Target Detection Based on Improved GFCC and Lightweight Neural Network; Proceedings of the 2023 42nd Chinese Control Conference (CCC); Tianjin, China. 24–26 July 2024; pp. 6239–6243. DOI