Effects of Equal Channel Angular Pressing on the Microstructure and Mechanical Properties of Explosion-Welded Al-Cu Bimetallic Plates
Status PubMed-not-MEDLINE Jazyk angličtina Země Švýcarsko Médium electronic
Typ dokumentu časopisecké články
Grantová podpora
CZ.10.03.01/00/22_003/0000048
REFRESH-Research Excellence For REgion Sustainability and High-tech Industries
PubMed
41303926
PubMed Central
PMC12654525
DOI
10.3390/ma18225080
PII: ma18225080
Knihovny.cz E-zdroje
- Klíčová slova
- Al/Cu bimetallic plates, ECAP, hardness, mechanical properties, microstructure, plastic working,
- Publikační typ
- časopisecké články MeSH
Explosive welding technology is crucial for the production of large-area plates composed of materials with varying plastic and physical properties. Severe plastic deformation processes increase the mechanical strength of the plates by refining grains and increasing dislocation density. The aim of the research presented in this paper was to analyze the effect of Equal Channel Angular Pressing (ECAP) on the mechanical properties and microstructure of an Al/Cu (EN AW-1050/Cu-ETP) bimetallic plate produced by the explosive welding technology. The ECAP process was carried out at room temperature. The ECAP experiments consisted of 1-3 passes using a die with a channel angle of 90°. The ram speed was 40 mm/min. The study also considered various sample cutting orientations (longitudinal, transverse) and various positions of the bimetallic sample in the die entry channel. Rotating the sample by an angle of 180° between consecutive passes was also considered. To achieve the research objective, static tensile tests, Vickers hardness tests at a load of 4.9 N, and microstructural analysis of the samples using scanning electron microscopy and energy dispersive spectroscopy were carried out. It was found that each subsequent pass in the ECAP process led to a gradual, severe change in the morphology of the Al/Cu interfacial transition layer. The orientation of the cutting plane of the samples was shown to have no effect on the hardness of the bimetallic material. Vickers hardness tests preceded by the ECAP process revealed a more uniform hardness distribution compared to the base material. The orientation of the Al/Cu plate layers in the ECAP die channel clearly influenced the character of the hardness distribution.
Zobrazit více v PubMed
Giudice F., Missori S., Scolaro C., Sili A. A Review on Metallurgical Issues in the Production and Welding Processes of Clad Steels. Materials. 2024;17:4420. doi: 10.3390/ma17174420. PubMed DOI PMC
Xu J., Liu Q., Xu Y., Xiao R., Hou Z., Chen S. Review on the Application of the Attention Mechanism in Sensing Information Processing for Dynamic Welding Processes. J. Manuf. Mater. Process. 2024;8:22. doi: 10.3390/jmmp8010022. DOI
Chen H., Zhu Z., Zhu Y., Sun L., Guo Y. Solid-State Welding of Aluminum to Magnesium Alloys: A Review. Metals. 2023;13:1410. doi: 10.3390/met13081410. DOI
Joshi G.R., Badheka V.J., Darji R.S., Oza A.D., Pathak V.J., Burduhos-Nergis D.D., Burduhos-Nergis D.P., Narwade G., Thirunavukarasu G. The Joining of Copper to Stainless Steel by Solid-State Welding Processes: A Review. Materials. 2022;15:7234. doi: 10.3390/ma15207234. PubMed DOI PMC
Feng R., Liu D., Zhang C., Pan Y., Wang Y., Chen J., Ye X., Lei M., Li Y. Effect of Solid-State Phase Transformation and Transverse Restraint on Residual Stress Distribution in Laser–Arc Hybrid Welding Joint of Q345 Steel. Materials. 2024;17:2632. doi: 10.3390/ma17112632. PubMed DOI PMC
Zhang H., Dengm Y., Chen F., Luo Y., Xiao X., Lu N., Liu Y., Deng Y. Fatigue life prediction for orthotropic steel bridge decks welds using a Gaussian variational bayes network and small sample experimental data. Reliab. Eng. Syst. Saf. 2025;264:111406. doi: 10.1016/j.ress.2025.111406. DOI
Klimpel A. Welding, Welding, and Cutting Metals. Technologies; Wydawnictwa Naukowo-Techniczne; Warsaw, Poland: 1999.
Opiekun Z.A. Welding of Metallic Materials. Wydawnictwo i Handel Książkami KaBe; Krosno, Poland: 2022.
Akca E., Gursel A. Solid State Welding and Application in Aeronautical Industry. Period. Eng. Nat. Sci. 2016;4:1–8. doi: 10.21533/pen.v4i1.46. DOI
Gadakh V.S., Badheka V.J., Mulay A.S. Solid-state joining of aluminum to titanium: A review. Mater. Des. Appl. 2021;235:1757–1799. doi: 10.1177/14644207211010839. DOI
An Introduction to Forge Welding. [(accessed on 12 September 2024)]. Available online: https://vernlewis.com/forge-welding/
Zhao D., Jiang C., Zhao K. Ultrasonic welding of AZ31B magnesium alloy and pure copper: Microstructure, mechanical properties and finite element analysis. J. Mater. Res. Technol. 2023;23:1273–1284. doi: 10.1016/j.jmrt.2023.01.095. DOI
Kaya Y. Investigation of Copper-Aluminium Composite Materials Produced by Explosive Welding. Metals. 2018;8:780. doi: 10.3390/met8100780. DOI
Szachogłuchowicz I., Śnieżek L., Ślęzak T. Mechanical Properties Analysis of Explosive Welded Sheet of AA2519-Ti6Al4V with Interlayer of AA1050 Subjected to Heat-Treatment. Materials. 2022;15:4023. doi: 10.3390/ma15114023. PubMed DOI PMC
Inao D., Mori A., Tanaka S., Hokamoto K. Explosive Welding of Thin Aluminum Plate onto Magnesium Alloy Plate Using a Gelatin Layer as a Pressure-Transmitting Medium. Metals. 2020;10:106. doi: 10.3390/met10010106. DOI
Sherpa B.B., Rani R. Advancements in explosive welding process for bimetallic material joining: A review. J. Alloys Metall. Syst. 2024;6:100078. doi: 10.1016/j.jalmes.2024.100078. DOI
Gulenc B. Investigation of interface properties and weldability of aluminum and copper plates by explosive welding method. Mater. Des. 2008;29:275–278. doi: 10.1016/j.matdes.2006.11.001. DOI
Lysak V.I., Kuzmin S.V. Lower boundary in metal explosive welding. Evolution of ideas. J. Mater. Process. Technol. 2012;212:150–156. doi: 10.1016/j.jmatprotec.2011.08.017. DOI
Kwiecienńn M., Majta J., Dziedzic D. Shear deformation and failure of explosive welded Inconel-microalloyed steels bimetals. Arch. Civ. Mech. Eng. 2014;14:32–39. doi: 10.1016/j.acme.2013.07.003. DOI
Ebrahimi M., Attarilar S., Gode C., Kandavalli S.R., Shamsborhan M., Wang Q. Conceptual Analysis on Severe Plastic Deformation Processes of Shape Memory Alloys: Mechanical Properties and Microstructure Characterization. Metals. 2023;13:447. doi: 10.3390/met13030447. DOI
Mavlyutov A., Evstifeev A., Volosevich D., Gushchina M., Voropaev A., Zotov O., Klimova-Korsmik O. The Effect of Severe Plastic Deformation on the Microstructure and Mechanical Properties of Composite from 5056 and 1580 Aluminum Alloys Produced with Wire Arc Additive Manufacturing. Metals. 2023;13:1281. doi: 10.3390/met13071281. DOI
Snopinski P., Tanski T., Labisz K., Rusz S., Jonsta P., Krol M. Wrought Aluminum-Magnesium Alloys Subjected to SPD Processing. Int. J. Mater. Res. 2016;107:637–645. doi: 10.3139/146.111383. DOI
Medeiros M.P., Lopes D.R., Kawasaki M., Langdon T.G., Figueiredo R.B. An Overview on the Effect of Severe Plastic Deformation on the Performance of Magnesium for Biomedical Applications. Materials. 2023;16:2401. doi: 10.3390/ma16062401. PubMed DOI PMC
Kowalczyk K., Jablonska M., Rusz S., Bednarczyk I. Influence of the DRECE Process of Severe Plastic Deformation on the Mechanical Properties of the Ultra-Low Carbon Interstitial Free Steel. Arch. Metall. Mater. 2018;63:2095–2100. doi: 10.24425/amm.2018.125148. DOI
Rusz S., Malanik K., Dutkiewicz J., Cizek L., Donic T., Kedron J., Tylsar S. New Design of the Forming Equipment DRECE for Obtaining UFG Structure in Strip of Sheet. Arch. Mater. Sci. Eng. 2010;42:111–118.
Rusz S., Hilser O., Ochodek V., Cada R., Svec J., Szkandera P. Influence of SPD Process on Low-Carbon Steel Mechanical Properties. MM Sci. J. 2019;12:2910–2914. doi: 10.17973/MMSJ.2019_06_201890. DOI
Carvalho G.H.S.F.L., Galvão I., Mendes R., Leal R.M., Loureiro A. Weldability of aluminium-copper in explosive welding. Int. J. Adv. Manuf. Technol. 2019;103:3211–3221. doi: 10.1007/s00170-019-03841-9. DOI
Copper and Copper Alloys—Plate, Sheet, Strip and Circles for General Purposes. European Committee for Standardization (CEN); Brussels, Belgium: 1997.
Aluminium and Aluminium Alloys—Chemical Composition and form of Wrought Products—Part 1: Numerical Designation System. European Committee for Standardization (CEN); Brussels, Belgium: 2004.
Shan S., Liu Y., Zhang J., Fan X., Jiao K. Explosion welding research on large-size ultra thick copper-steel composites: A review. J. Mater. Res. Technol. 2023;24:4130–4142. doi: 10.1016/j.jmrt.2023.04.087. DOI
Koujalagi M.B., Siddesha H.S. ECAP of titanium alloy by sever plastic deformation: A review. Mater. Today Proc. 2021;45:71–77. doi: 10.1016/j.matpr.2020.10.094. DOI
Shaeri M.H., Shaeri M., Salehi M.T., Seyyedein S.H., Abutalebi M.R. Effect of equal channel angular pressing on aging treatment of Al-7075 alloy. Prog. Nat. Sci. Mater. Int. 2015;25:159–168. doi: 10.1016/j.pnsc.2015.03.005. DOI
Valiev R.Z., Langdon T.G. Principles of equal-channel angular pressing as a processing tool for grain refinement. Prog. Mater. Sci. 2006;51:881–981. doi: 10.1016/j.pmatsci.2006.02.003. DOI
Bataev I.A., Riabinkina P.A., Emurlaev K.I., Golovin E.D., Lazarenko D.V., Chen P., Bataeva Z.B., Ogneva T.S., Nasennik I.E., Bataev A.A. Uncovering the influence of mechanical properties on wave formation during high-velocity impact welding by numerical simulation. J. Mater. Process. Technol. 2024;332:118532. doi: 10.1016/j.jmatprotec.2024.118532. DOI
Mendes R., Ribeiro J.B., Loureiro A. Effect of explosive characteristics on the explosive welding of stainless steel to carbon steel in cylindrical configuration. Mater. Des. 2013;51:182–192. doi: 10.1016/j.matdes.2013.03.069. DOI
Carton E.P. Wave Forming Mechanisms in Explosive Welding. Mater. Sci. Forum. 2004;465–466:219–224. doi: 10.4028/www.scientific.net/MSF.465-466.219. DOI
Bahrani A.S., Black T.J., Crossland B. The Mechanics of Wave Formation in Explosive Welding. Proc. R. Soc. London Ser. A Math. Phys. Sci. 1967;296:123–136.
Ben-Artzy A., Stern A., Frage N., Shribman V., Sadot O. Wave formation mechanism in magnetic pulse welding. Int. J. Impact Eng. 2010;37:397–404. doi: 10.1016/j.ijimpeng.2009.07.008. DOI
Plaksin I., Campos J., Ribeiro J., Mendes R., Direito J., Braga D., Pruemmer R. Novelties in physics of explosive welding and powder compaction. J. Phys. IV. 2003;110:797–802. doi: 10.1051/jp4:20020791. DOI
Wang K., Kuroda M., Chen X., Hokamoto K., Li X., Zeng X., Nie S., Wang Y. Mechanical Properties of Explosion-Welded Titanium/Duplex Stainless Steel under Different Energetic Conditions. Metals. 2022;12:1354. doi: 10.3390/met12081354. DOI
Sun Y., Yu S., Wang B., Liu L., Liu E., Feng T. Interface Microstructure and Mechanical Properties of Nickel/Steel Bimetal Composite Pipe Fabricated by Explosive Welding. Metals. 2024;14:1253. doi: 10.3390/met14111253. DOI
Kaya Y. Microstructural, Mechanical and Corrosion Investigations of Ship Steel-Aluminum Bimetal Composites Produced by Explosive Welding. Metals. 2018;8:544. doi: 10.3390/met8070544. DOI
Żaba K., Puchlerska S., Kuczek Ł., Trzepieciński T., Maj P. Effect of Step Size on the Formability of Al/Cu Bimetallic Sheets in Single Point Incremental Sheet Forming. Materials. 2023;16:367. doi: 10.3390/ma16010367. PubMed DOI PMC
Figueiredo R.B., Cetlin P.R., Langdon T.G. The processing of difficult-to-work alloys by ECAP with an emphasis on magnesium alloys. Acta Mater. 2007;55:4769–4779. doi: 10.1016/j.actamat.2007.04.043. DOI
Stepanov N.D., Kuznetsov A.V., Salischev G.A., Raab G.I., Valiev R.Z. Effect of Cold Rolling on Structure and Mechanical Properties of Copper Subjected to Different Numbers of Passes of ECAP. Mater. Sci. Forum. 2011;667–669:295–300. doi: 10.4028/www.scientific.net/MSF.667-669.295. DOI
de Faria C.G., Almeida N.G.S., Balzuweit K., Aguilar M.T.P., Cetlin P.R. The effect of initial strain in the severe plastic deformation of aluminum on the subsequent work hardening regeneration through low strain amplitude multi-directional forging. Mater. Lett. 2021;290:129462. doi: 10.1016/j.matlet.2021.129462. DOI
Eivani A.R., Mirzakoochakshirazi H.R., Jafarian H.R. Investigation of joint interface and cracking mechanism of thick cladding of copper on aluminum by equal channel angular pressing (ECAP) J. Mater. Res. Technol. 2020;9:3394–3405. doi: 10.1016/j.jmrt.2020.01.075. DOI
Volokitina I., Sapargaliyeva B., Agabekova A., Syrlybekkyzy S., Volokitin A., Nurshakhanova L., Nurbaeva F., Kolesnikov A., Sabyrbayeva S., Iabassar A., et al. Increasing strength and performance properties of bimetallic rods during severe plastic deformation. Case Stud. Constr. Mater. 2023;19:e02256. doi: 10.1016/j.cscm.2023.e02256. DOI
Yu T. Deformation Microstructure and Recovery. In: Huang K., editor. Recrystallization: Types, Techniques and Applications. Nova Science Publishers; Hauppauge, NY, USA: 2020. pp. 1–44.
Loureiro A., Mendes R., Ribeiro J.B., Leal R.M., Galvão I. Effect of explosive mixture on quality of explosive welds of copper to aluminium. Mater. Des. 2016;95:256–267. doi: 10.1016/j.matdes.2016.01.116. DOI
Bakhtiari H., Abbasi H., Sabet H., Khanzadeh M.R., Farvizi M. Investigation on the Effects of Explosive Welding Parameters on the Mechanical Properties and Electrical Conductivity of Al-Cu Bimetal. J. Environ. Friendly Mater. 2022;6:31–37.
Amani H., Soltanieh M. Intermetallic Phase Formation in Explosively Welded Al/Cu Bimetals. The Minerals, Metals & Materials Society and ASM International 2016. Metall. Mater. Trans. B. 2016;47:2524–2534.
Paul H., Lityńska-Dobrzyńska L., Prażmowski M. Microstructure and Phase Constitution Near the Interface of Explosively Welded Aluminum/Copper Plates. Metall. Mater. Trans. A. 2013;44:3836–3851. doi: 10.1007/s11661-013-1703-1. DOI
Medvedev A.E., Lapovok R., Koch E., Höppel H.W., Göken M. Optimisation of interface formation by shear inclination: Example of aluminium-cooper hybrid produced by ECAP with back-pressure. Mater. Des. 2018;146:142–151. doi: 10.1016/j.matdes.2018.03.021. DOI
Azizi A., Abedi H.R., Saboori A. Work hardening behavior and substructure evolution of a low-density steel during compressive deformation. J. Mater. Res. Technol. 2022;21:4200–4211. doi: 10.1016/j.jmrt.2022.11.032. DOI