Myxozoans are microscopic, metazoan, obligate parasites, belonging to the phylum Cnidaria. In contrast to the free-living lifestyle of most members of this taxon, myxozoans have complex life cycles alternating between vertebrate and invertebrate hosts. Vertebrate hosts are primarily fish, although they are also reported from amphibians, reptiles, trematodes, mollusks, birds and mammals. Invertebrate hosts include annelids and bryozoans. Most myxozoans are not overtly pathogenic to fish hosts, but some are responsible for severe economic losses in fisheries and aquaculture. In both scenarios, the interaction between the parasite and the host immune system is key to explain such different outcomes of this relationship. Innate immune responses contribute to the resistance of certain fish strains and species, and the absence or low levels of some innate and regulatory factors explain the high pathogenicity of some infections. In many cases, immune evasion explains the absence of a host response and allows the parasite to proliferate covertly during the first stages of the infection. In some infections, the lack of an appropriate regulatory response results in an excessive inflammatory response, causing immunopathological consequences that are worse than inflicted by the parasite itself. This review will update the available information about the immune responses against Myxozoa, with special focus on T and B lymphocyte and immunoglobulin responses, how these immune effectors are modulated by different biotic and abiotic factors, and on the mechanisms of immune evasion targeting specific immune effectors. The current and future design of control strategies for myxozoan diseases is based on understanding this myxozoan-fish interaction, and immune-based strategies such as improvement of innate and specific factors through diets and additives, host genetic selection, passive immunization and vaccination, are starting to be considered.
- MeSH
- adaptivní imunita * MeSH
- antiparazitární látky farmakologie MeSH
- B-lymfocyty imunologie metabolismus parazitologie MeSH
- imunitní únik MeSH
- imunoglobuliny imunologie metabolismus MeSH
- interakce hostitele a parazita MeSH
- Myxozoa účinky léků imunologie patogenita MeSH
- nemoci ryb imunologie metabolismus parazitologie prevence a kontrola MeSH
- parazitární nemoci u zvířat imunologie metabolismus parazitologie prevence a kontrola MeSH
- přirozená imunita * MeSH
- ryby imunologie metabolismus parazitologie MeSH
- T-lymfocyty imunologie metabolismus parazitologie MeSH
- vakcíny farmakologie MeSH
- vodní hospodářství MeSH
- zvířata MeSH
- Check Tag
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- přehledy MeSH
- Research Support, U.S. Gov't, Non-P.H.S. MeSH
The relationships between parasites and their hosts are intimate, dynamic and complex; the evolution of one is inevitably linked to the other. Despite multiple origins of parasitism in the Cnidaria, only parasites belonging to the Myxozoa are characterized by a complex life cycle, alternating between fish and invertebrate hosts, as well as by high species diversity. This inspired us to examine the history of adaptive radiations in myxozoans and their hosts by determining the degree of congruence between their phylogenies and by timing the emergence of myxozoan lineages in relation to their hosts. Recent genomic analyses suggested a common origin of Polypodium hydriforme, a cnidarian parasite of acipenseriform fishes, and the Myxozoa, and proposed fish as original hosts for both sister lineages. We demonstrate that the Myxozoa emerged long before fish populated Earth and that phylogenetic congruence with their invertebrate hosts is evident down to the most basal branches of the tree, indicating bryozoans and annelids as original hosts and challenging previous evolutionary hypotheses. We provide evidence that, following invertebrate invasion, fish hosts were acquired multiple times, leading to parallel cospeciation patterns in all major phylogenetic lineages. We identify the acquisition of vertebrate hosts that facilitate alternative transmission and dispersion strategies as reason for the distinct success of the Myxozoa, and identify massive host specification-linked parasite diversification events. The results of this study transform our understanding of the origins and evolution of parasitism in the most basal metazoan parasites known.
- MeSH
- biodiverzita * MeSH
- biologická evoluce * MeSH
- časové faktory MeSH
- Cnidaria parazitologie MeSH
- fylogeneze MeSH
- interakce hostitele a parazita MeSH
- Myxozoa fyziologie MeSH
- obratlovci parazitologie MeSH
- pravděpodobnostní funkce MeSH
- zvířata MeSH
- Check Tag
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
BACKGROUND: Swim bladder inflammation (SBI) is an important disease of common carp fingerlings in Central Europe. In the 1980s, its etiology was ascribed to multicellular proliferative stages of the myxozoan parasite Sphaerospora dykovae (formerly S. renicola). S. dykovae was reported to proliferate in the blood and in the swim bladder prior to the invasion of the kidney, where sporogony takes place. Due to the presence of emerging numbers of proliferative myxozoan blood stages at different carp culture sites in recent years we analysed cases of SBI, for the first time, using molecular diagnostics, to identify the myxozoan parasites present in diseased swim bladders. METHODS: We amplified myxozoan SSU rDNA in a non-specific approach and compared the species composition in swim bladders at culture sites where carp demonstrated 1. No signs of SBI, 2. Minor pathological changes, and 3. Heavy SBI. Based on DNA sequences, we determined the localisation and distribution of the most frequent species by in situ hybridisation, thereby determining which myxozoans are involved in SBI. RESULTS: Large multicellular myxozoan swim bladder stages characterised heavy SBI cases and were identified as S. dykovae, however, blood stages were predominantly represented by Sphaerospora molnari, whose numbers were greatly increased in carp with mild and heavy SBI, compared with SBI-free fish. S. molnari was found to invade different organs and cause inflammatory changes also in the absence of S. dykovae. One site with mild SBI cases was characterised by Buddenbrockia sp. infection in different organs and a general granulomatous response. CONCLUSIONS: We provide evidence that the etiology of SBI can vary in relation to culture site and disease severity and that emerging numbers of S. molnari in the blood represent an important co-factor or precondition for SBI.
- MeSH
- časové faktory MeSH
- kapři MeSH
- klonování DNA MeSH
- Myxozoa klasifikace genetika MeSH
- nemoci ryb parazitologie patologie MeSH
- parazitární nemoci u zvířat parazitologie patologie MeSH
- prevalence MeSH
- roční období MeSH
- vzdušné vaky parazitologie patologie MeSH
- zánět parazitologie patologie veterinární MeSH
- zvířata MeSH
- Check Tag
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
Myxozoans are a group of diverse, spore-forming metazoan microparasites bound to aquatic environments. Sphaerospora dykovae (previously S. renicola) causes renal sphaerosporosis and acute swim bladder inflammation (SBI) in juvenile Cyprinus carpio carpio, in central Europe. A morphologically similar species with comparably low pathogenicity, S. angulata has been described from C. c. carpio, Carassius auratus auratus and Carassius gibelio. To clarify uncertainties and ambiguities in taxon identification in these hosts we decided to re-investigate differences in spore morphology using a statistical approach, in combination with SSU and LSU rDNA sequence analyses. We found that developing spores of S. angulata and S. dykovae cannot be distinguished morphologically and designed a duplex PCR assay for the cryptic species that demonstrated S. dykovae is specific to C. c. carpio, whereas S. angulata infects C. a. auratus and C. gibelio. The molecular identification of myxozoan blood stages in common carp and goldfish, which had previously been ascribed to Sphaerospora spp. showed that approximately 75% of blood stages were from non-sphaerosporid coelozoic species infecting these cyprinids and more than 10% were from an alien species, Myxobilatus gasterostei, developing in sticklebacks. We hereby report non-selective myxozoan host invasion and multi-species infections, whose role in SBI still requires clarification.
- MeSH
- druhová specificita MeSH
- fylogeneze MeSH
- genetická variace MeSH
- kapři parazitologie MeSH
- krev parazitologie MeSH
- ledviny parazitologie MeSH
- molekulární sekvence - údaje MeSH
- Myxozoa klasifikace cytologie genetika fyziologie MeSH
- nemoci ryb epidemiologie parazitologie MeSH
- parazitární nemoci u zvířat epidemiologie parazitologie MeSH
- polymerázová řetězová reakce MeSH
- prevalence MeSH
- ribozomální DNA genetika MeSH
- zvířata MeSH
- Check Tag
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- Geografické názvy
- Evropa MeSH
In the eastern Gulf of Mexico, off the coast of Florida, grey snapper, Lutjanus griseus was found to be infected with the myxozoan parasite Sphaerospora motemarini n. sp., with high prevalence (83%) and intensity of infection occuring in age-0 fish, and with parasite levels decreasing with age (age-1 snapper 40%; age-2 snapper 0%). The morphological, molecular and phylogenetic characterisation of the myxozoan showed that it is a member of the typically marine, polysporoplasmid Sphaerospora spp. which form a subclade within the Sphaerospora sensu stricto clade of myxozoans, which is characterised by large expansion segments in their SSU rDNA sequences. Presporogonic stages of S. motemarini n. sp. were detected in the blood, using PCR. Pseudoplasmodia and spores were found to develop in the renal corpuscles of the host, causing their massive expansion. Macroscopic and histopathological changes were observed in age-0 fish and show that S. motemarini n. sp. causes severe glomerulonephritis in L. griseus leading to a compromised host condition, which makes it more susceptible to stress (catch-and-release, predators, water quality) and can result in mortalities. These results are discussed in relation to the exploitation of grey snapper populations by commercial and recreational fisheries and with the observed increased mortalities with temperature along the coast of Florida. In the future, we would like to determine prevalence and intensity of infection with S. motemarini n. sp. in juvenile L. griseus in different areas of the Gulf of Mexico in order to be able to estimate the temperature dependence of S. motemarini n. sp. proliferation and to be able to predict its distribution and severity during climatic changes in the Gulf.
- Publikační typ
- časopisecké články MeSH