Organophosphorus compounds (OP) are a constant problem, both in the military and in the civilian field, not only in the form of acute poisoning but also for their long-lasting consequences. No antidote has been found that satisfactorily protects against the toxic effects of organophosphates. Likewise, there is no universal cure to avert damage after poisoning. The key mechanism of organophosphate toxicity is the inhibition of acetylcholinesterase. The overstimulation of nicotinic or muscarinic receptors by accumulated acetylcholine on a synaptic cleft leads to activation of the glutamatergic system and the development of seizures. Further consequences include generation of reactive oxygen species (ROS), neuroinflammation, and the formation of various other neuropathologists. In this review, we present neuroprotection strategies which can slow down the secondary nerve cell damage and alleviate neurological and neuropsychiatric disturbance. In our opinion, there is no unequivocal approach to ensure neuroprotection, however, sooner the neurotoxicity pathway is targeted, the better the results which can be expected. It seems crucial to target the key propagation pathways, i.e., to block cholinergic and, foremostly, glutamatergic cascades. Currently, the privileged approach oriented to stimulating GABAAR by benzodiazepines is of limited efficacy, so that antagonizing the hyperactivity of the glutamatergic system could provide an even more efficacious approach for terminating OP-induced seizures and protecting the brain from permanent damage. Encouraging results have been reported for tezampanel, an antagonist of GluK1 kainate and AMPA receptors, especially in combination with caramiphen, an anticholinergic and anti-glutamatergic agent. On the other hand, targeting ROS by antioxidants cannot or already developed neuroinflammation does not seem to be very productive as other processes are also involved.
- MeSH
- acetylcholinesterasa metabolismus MeSH
- cholinesterasové inhibitory toxicita MeSH
- lidé MeSH
- neurotoxické syndromy * etiologie prevence a kontrola MeSH
- neurozánětlivé nemoci MeSH
- organofosfáty MeSH
- otrava organofosfáty * farmakoterapie prevence a kontrola MeSH
- reaktivní formy kyslíku MeSH
- záchvaty MeSH
- Check Tag
- lidé MeSH
- Publikační typ
- časopisecké články MeSH
- přehledy MeSH
Organophosphorus compounds (OPs) involving life-threatening nerve agents (NA) have been known for several decades. Despite a clear mechanism of their lethality caused by the irreversible inhibition of acetylcholinesterase (AChE) and manifested via overstimulation of peripheral nicotinic and muscarinic acetylcholine (ACh) receptors, the mechanism for central neurotoxicity responsible for acute or delayed symptoms of the poisoning has not been thoroughly uncovered. One of the reasons is the lack of a suitable model. In our study, we have chosen the SH-SY5Y model in both the differentiated and undifferentiated state to study the effects of NAs (GB, VX and A234). The activity of expressed AChE in cell lysate assessed by Ellman's method showed 7.3-times higher activity in differentiated SH-SY5Y cells in contrast to undifferentiated cells, and with no involvement of BuChE as proved by ethopropazine (20 μM). The activity of AChE was found to be, in comparison to untreated cells, 16-, 9.3-, and 1.9-times lower upon A234, VX, and GB (100 μM) administration respectively. The cytotoxic effect of given OPs expressed as the IC50 values for differentiated and undifferentiated SH-SY5Y, respectively, was found 12 mM and 5.7 mM (A234), 4.8 mM and 1.1 mM (VX) and 2.6 mM and 3.8 mM (GB). In summary, although our results confirm higher AChE expression in the differentiated SH-SY5Y cell model, the such higher expression does not lead to a more pronounced NA cytotoxic effect. On the contrary, higher expression of AChE may attenuate NA-induced cytotoxicity by scavenging the NA. Such finding highlights a protective role for cholinesterases by scavenging Novichoks (A-agents). Second, we confirmed the mechanism of cytotoxicity of NAs, including A-agents, can be ascribed rather to the non-specific effects of OPs than to AChE-mediated effects.