Macrocyclic inhibitors have emerged as a privileged scaffold in medicinal chemistry, offering enhanced selectivity, stability, and pharmacokinetic profiles compared to their linear counterparts. Here, we describe a novel, on-resin macrocyclization strategy for the synthesis of potent inhibitors targeting the secreted protease Major Aspartyl Peptidase 1 in Cryptococcus neoformans, a pathogen responsible for life-threatening fungal infections. By employing diverse aliphatic linkers and statine-based transition-state mimics, we constructed a focused library of 624 macrocyclic compounds. Screening identified several subnanomolar inhibitors with desirable pharmacokinetic and antifungal properties. Lead compound 25 exhibited a Ki of 180 pM, significant selectivity against host proteases, and potent antifungal activity in culture. The streamlined synthetic approach not only yielded drug-like macrocycles with potential in antifungal therapy but also provided insights into structure-activity relationships that can inform broader applications of macrocyclization in drug discovery.
- MeSH
- antifungální látky * farmakologie chemie chemická syntéza farmakokinetika MeSH
- Cryptococcus neoformans * účinky léků enzymologie MeSH
- inhibitory proteas * farmakologie chemie chemická syntéza farmakokinetika MeSH
- lidé MeSH
- makrocyklické sloučeniny * farmakologie chemie chemická syntéza farmakokinetika MeSH
- mikrobiální testy citlivosti MeSH
- vztahy mezi strukturou a aktivitou MeSH
- zvířata MeSH
- Check Tag
- lidé MeSH
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
Rhomboid intramembrane serine proteases have been implicated in several pathologies, and emerge as attractive pharmacological target candidates. The most potent and selective rhomboid inhibitors available to date are peptidyl α-ketoamides, but their selectivity for diverse rhomboid proteases and strategies to modulate it in relevant contexts are poorly understood. This gap, together with the lack of suitable in vitro models, hinders ketoamide development for relevant eukaryotic rhomboid enzymes. Here we explore the structure-activity relationship principles of rhomboid inhibiting ketoamides by medicinal chemistry and enzymatic in vitro and in-cell assays with recombinant rhomboid proteases GlpG, human mitochondrial rhomboid PARL and human RHBDL2. We use X-ray crystallography in lipidic cubic phase to understand the binding mode of one of the best ketoamide inhibitors synthesized here containing a branched terminal substituent bound to GlpG. In addition, to extend the interpretation of the co-crystal structure, we use quantum mechanical calculations and quantify the relative importance of interactions along the inhibitor molecule. These combined experimental analyses implicates that more extensive exploration of chemical space at the prime side is unexpectedly powerful for the selectivity of rhomboid inhibiting ketoamides. Together with variations in the peptide sequence at the non-prime side, or its non-peptidic alternatives, this strategy enables targeted tailoring of potent and selective ketoamides towards diverse rhomboid proteases including disease-relevant ones such as PARL and RHBDL2.
- MeSH
- amidy * chemie farmakologie chemická syntéza MeSH
- inhibitory proteas farmakologie chemie chemická syntéza metabolismus MeSH
- krystalografie rentgenová MeSH
- lidé MeSH
- molekulární modely MeSH
- molekulární struktura MeSH
- vztah mezi dávkou a účinkem léčiva MeSH
- vztahy mezi strukturou a aktivitou MeSH
- Check Tag
- lidé MeSH
- Publikační typ
- časopisecké články MeSH
Accurate estimation of protein-ligand binding affinity is the cornerstone of computer-aided drug design. We present a universal physics-based scoring function, named SQM2.20, addressing key terms of binding free energy using semiempirical quantum-mechanical computational methods. SQM2.20 incorporates the latest methodological advances while remaining computationally efficient even for systems with thousands of atoms. To validate it rigorously, we have compiled and made available the PL-REX benchmark dataset consisting of high-resolution crystal structures and reliable experimental affinities for ten diverse protein targets. Comparative assessments demonstrate that SQM2.20 outperforms other scoring methods and reaches a level of accuracy similar to much more expensive DFT calculations. In the PL-REX dataset, it achieves excellent correlation with experimental data (average R2 = 0.69) and exhibits consistent performance across all targets. In contrast to DFT, SQM2.20 provides affinity predictions in minutes, making it suitable for practical applications in hit identification or lead optimization.
- MeSH
- ligandy MeSH
- proteiny * metabolismus MeSH
- racionální návrh léčiv * MeSH
- termodynamika MeSH
- vazba proteinů MeSH
- Publikační typ
- časopisecké články MeSH
The semiempirical quantum mechanical (SQM) methods used in drug design are commonly parametrized and tested on data sets of systems that may not be representative models for drug-biomolecule interactions in terms of both size and chemical composition. This is addressed here with a new benchmark data set, PLF547, derived from protein-ligand complexes, consisting of complexes of ligands with protein fragments (such as amino-acid side chains), with interaction energies based on MP2-F12 and DLPNO-CCSD(T) calculations. From these, composite benchmark interaction energies are also built for complexes of the ligand with the complete active site of the protein (PLA15 data set). These data sets are used to test multiple SQM methods with corrections for noncovalent interactions; the role of the solvation model in the calculations is tested as well.
An accurate description of solvation effects is of high importance in modeling biomolecular systems. Our main interest is to find an accurate yet efficient solvation model for semiempirical quantum-mechanical methods applicable to large protein-ligand complexes in the context of computer-aided drug design. We present a survey of readily available methods and a new reparametrization of the COSMO solvent model for PM6 and PM7 calculations in MOPAC. We have tested the reparametrized method on validation data sets of small drug-like molecules for which experimental solvation free energies are available as well as on a set of large model systems of the active site of carbonic anhydrase II interacting with a series of ligands for which experimental affinity values are known. In both cases, there is a significant improvement in accuracy after the reparametrization and the addition of a nonpolar term to the COSMO solvent model.
To find and calibrate a robust and reliable computational protocol for mapping conformational space of medium-sized molecules, exhaustive conformational sampling has been carried out for a series of seven macrocyclic compounds of varying ring size and one acyclic analogue. While five of them were taken from the MD/LLMOD/force field study by Shelley and co-workers ( Watts , K. S. ; Dalal , P. ; Tebben , A. J. ; Cheney , D. L. ; Shelley , J. C. Macrocycle Conformational Sampling with MacroModel . J. Chem. Inf. MODEL: 2014 , 54 , 2680 - 2696 ), three represent potential macrocyclic inhibitors of human cyclophilin A. The free energy values (GDFT/COSMO-RS) for all of the conformers of each compound were obtained by a composite protocol based on in vacuo quantum mechanics (DFT-D3 method in a large basis set), standard gas-phase thermodynamics, and the COSMO-RS solvation model. The GDFT/COSMO-RS values were used as the reference for evaluating the performance of conformational sampling algorithms: standard and extended MD/LLMOD search (simulated-annealing molecular dynamics with low-lying eigenvector following algorithms, employing the OPLS2005 force field plus GBSA solvation) available in MacroModel and plain molecular dynamics (MD) sampling at high temperature (1000 K) using the semiempirical quantum mechanics (SQM) potential SQM(PM6-D3H4/COSMO) followed by energy minimization of the snapshots. It has been shown that the former protocol (MD/LLMOD) may provide a more complete set of initial structures that ultimately leads to the identification of a greater number of low-energy conformers (as assessed by GDFT/COSMO-RS) than the latter (i.e., plain SQM MD). The CPU time needed to fully evaluate one medium-sized compound (∼100 atoms, typically resulting in several hundred or a few thousand conformers generated and treated quantum-mechanically) is approximately 1,000-100,000 CPU hours on today's computers, which transforms to 1-7 days on a small-sized computer cluster with a few hundred CPUs. Finally, our data sets based on the rigorous quantum-chemical approach allow us to formulate a composite conformational sampling protocol with multiple checkpoints and truncation of redundant structural data that offers superior insights at affordable computational cost.
- MeSH
- algoritmy MeSH
- kalibrace MeSH
- krystalografie MeSH
- kvantová teorie MeSH
- makrocyklické sloučeniny chemie MeSH
- molekulární konformace * MeSH
- rychlé screeningové testy MeSH
- simulace molekulární dynamiky MeSH
- termodynamika MeSH
- vysoká teplota MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- srovnávací studie MeSH
Dyadic interactions often involve a dynamic process of mutual reciprocity; to steer a series of exchanges towards a desired outcome, both interactants must adapt their own behaviour according to that of their interaction partner. Understanding the brain processes behind such bidirectional reciprocity is therefore central to social neuroscience, but this requires measurement of both individuals' brains during real-world exchanges. We achieved this by performing functional magnetic resonance imaging (fMRI) on pairs of male individuals simultaneously while they interacted in a modified iterated Ultimatum Game (iUG). In this modification, both players could express their intent and maximise their own monetary gain by reciprocating their partner's behaviour - they could promote generosity through cooperation and/or discourage unfair play with retaliation. By developing a novel model of reciprocity adapted from behavioural economics, we then show that each player's choices can be predicted accurately by estimating expected utility (EU) not only in terms of immediate payoff, but also as a reaction to their opponent's prior behaviour. Finally, for the first time we reveal that brain signals implicated in social decision making are modulated by these estimates of EU, and become correlated more strongly between interacting players who reciprocate one another.
- MeSH
- behaviorální ekonomie * MeSH
- dospělí MeSH
- interpersonální vztahy * MeSH
- kooperační chování MeSH
- lidé MeSH
- magnetická rezonanční tomografie metody MeSH
- mapování mozku metody MeSH
- mladý dospělý MeSH
- mozek fyziologie MeSH
- rozhodování * MeSH
- teorie her * MeSH
- Check Tag
- dospělí MeSH
- lidé MeSH
- mladý dospělý MeSH
- mužské pohlaví MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
We have recently introduced the "SQM/COSMO" scoring function which combines a semiempirical quantum mechanical description of noncovalent interactions at the PM6-D3H4X level and the COSMO implicit model of solvation. This approach outperformed standard scoring functions but faced challenges with a metalloprotein featuring a Zn(2+)···S(-) interaction. Here, we invoke SCC-DFTB3-D3H4, a higher-level SQM method, and observe improved behavior for the metalloprotein and high-quality results for the other systems. This method holds promise for diverse protein-ligand complexes including metalloproteins.
- MeSH
- kvantová teorie * MeSH
- ligandy MeSH
- metaloproteiny metabolismus MeSH
- termodynamika MeSH
- vazba proteinů MeSH
- Publikační typ
- časopisecké články MeSH
Overactivation of NMDA receptors has been implicated in various neuropathological conditions, including brain ischaemia, neurodegenerative disorders and epilepsy. Production of d-serine, an NMDA receptor co-agonist, from l-serine is catalyzed in vivo by the pyridoxal-5'-phosphate (PLP)-dependent enzyme serine racemase. Specific inhibition of this enzyme has been proposed as a promising strategy for treatment of neurological conditions caused by NMDA receptor dysfunction. Here we present the synthesis and activity analysis of a series of malonate-based inhibitors of mouse serine racemase (mSR). The compounds possessed IC50 values ranging from 40 ± 11 mM for 2,2-bis(hydroxymethyl)malonate down to 57 ± 1 μM for 2,2-dichloromalonate, the most effective competitive mSR inhibitor known to date. The structure-activity relationship of the whole series in the human orthologue (hSR) was interpreted using Glide docking, WaterMap analysis of hydration and quantum mechanical calculations based on the X-ray structure of the hSR/malonate complex. Docking into the hSR active site with three thermodynamically favourable water molecules was able to discern qualitatively between good and weak inhibitors. Further improvement in ranking was obtained using advanced PM6-D3H4X/COSMO semiempirical quantum mechanics-based scoring which distinguished between the compounds with IC50 better/worse than 2 mM. We have thus not only found a new potent hSR inhibitor but also worked out a computer-assisted protocol to rationalize the binding affinity which will thus aid in search for more effective SR inhibitors. Novel, potent hSR inhibitors may represent interesting research tools as well as drug candidates for treatment of diseases associated with NMDA receptor overactivation.
- MeSH
- inhibitory enzymů chemická syntéza chemie farmakologie MeSH
- kinetika MeSH
- krystalografie rentgenová MeSH
- malonáty chemická syntéza chemie farmakologie MeSH
- molekulární modely MeSH
- molekulární struktura MeSH
- myši MeSH
- racemasy a epimerasy antagonisté a inhibitory metabolismus MeSH
- termodynamika MeSH
- vztah mezi dávkou a účinkem léčiva MeSH
- vztahy mezi strukturou a aktivitou MeSH
- zvířata MeSH
- Check Tag
- myši MeSH
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
The effect of halogen-to-hydrogen bond substitution on the binding energetics and biological activity of a human aldose reductase inhibitor has been studied using X-ray crystallography, IC50 measurements, advanced binding free energy calculations, and simulations. The replacement of Br or I atoms by an amine (NH2) group has not induced changes in the original geometry of the complex, which made it possible to study the isolated features of selected noncovalent interactions in a biomolecular complex.
- MeSH
- aldehydreduktasa antagonisté a inhibitory chemie metabolismus MeSH
- halogenace MeSH
- inhibitory enzymů chemie farmakologie MeSH
- krystalografie rentgenová MeSH
- lidé MeSH
- molekulární modely MeSH
- vazebná místa MeSH
- vodíková vazba MeSH
- Check Tag
- lidé MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH