Infection associated with titanium based implants remains the most serious problem in implant surgery hence it is important to find optimal strategies to prevent infections. In the present study, we investigated the surface properties, antibacterial activity and biocompatibility of nanocomposite coatings based on an amorphous hydrocarbon (a-C:H) film containing copper nanoparticles (CuNPs) deposited on Ti discs via a gas aggregation cluster source. Three different Cu/a-C:H coatings with approximately the same amount of embedded CuNPs with and without barrier a-C:H layer were fabricated. The obtained results revealed that different structures of the produced coatings have significantly different release rates of Cu ions from the coatings into the aqueous media. This subsequently influences the antibacterial efficiency and osteoblast cell viability of the treated coatings. Coatings with the highest number of CuNPs resulted in excellent antibacterial activity exhibiting approximately 4 log reduction of E.coli and S.aureus after 24 h incubation. The cytotoxicity study revealed that after 7 day cell seeding, even the coating with the highest Cu at.% (4 at.%) showed a cell viability of ̴90%. Consequently, the coating, formed with a properly tailored number of CuNPs and a-C:H barrier thickness offer a strong antibacterial effect without any harm to osteoblast cells.
Cell behavior depends strongly on the physical and chemical properties of the material surface, for example, its chemistry and topography. The authors have therefore assessed the influence of materials of different chemical composition (i.e., glass substrates with and without TiO(2) films in anatase form) and different surface roughness (R(a) = 0, 40, 100, or 170 nm) on the adhesion, proliferation, and osteogenic differentiation of human osteoblast-like MG63 cells. On day 1 after seeding, the largest cell spreading area was found on flat TiO(2) films (R(a) = 0 nm). On TiO(2) films with R(a) = 170 nm, the cell spreading area was larger and the number of initially adhering cells was higher than the values on the corresponding uncoated glass. On day 3 after seeding, the cell number was higher on the TiO(2) films (R(a) = 0 and 40 nm) than on the corresponding glass substrates and the standard polystyrene dishes. On day 7, all TiO(2) films contained higher cell numbers than the corresponding glass substrates, and the cells on the TiO(2) films with R(a) = 40 and 100 nm also contained a higher concentration of β-actin. These results indicate that TiO(2) coating had a positive influence on the adhesion and subsequent proliferation of MG63 cells. In addition, on all investigated materials, the cell population density achieved on day 7 decreased with increasing surface roughness. The concentration of osteocalcin, measured per mg of protein, was significantly lower in the cells on rougher TiO(2) films (R(a) = 100 and 170 nm) than in the cells on the polystyrene dishes. Thus, it can be concluded that the adhesion, growth, and phenotypic maturation of MG63 cells were controlled by the interplay between the material chemistry and surface topography, and were usually better on smoother and TiO(2)-coated surfaces than on rougher and uncoated glass substrates.
A new route for coating various substrates with antifouling polymer layers was developed. It consisted in deposition of an amino-rich adhesion layer by means of RF magnetron sputtering of Nylon 6,6 followed by the well-controlled, surface-initiated atom transfer radical polymerization of antifouling polymer brushes initiated by bromoisobutyrate covalently attached to amino groups present in the adhesion layer. Polymer brushes of hydroxy- and methoxy-capped oligoethyleneglycol methacrylate and carboxybetaine acrylamide were grafted from bromoisobutyrate initiator attached to a 15 nm thick amino-rich adhesion layer deposited on gold, silicon, polypropylene, and titanium-aluminum-vanadium alloy surfaces. Well-controlled polymerization kinetics made it possible to control the thickness of the brushes at a nanometer scale. Zero fouling from single protein solutions and a reduction of more than 90% in the fouling from blood plasma observed on the uncoated surfaces was achieved. The feasibility of functionalization with bioactive compounds was tested by covalent attachment of streptavidin onto poly(oligoethylene glycol methacrylate) brush and subsequent immobilization of model antibodies and oligonucleotides. The procedure is nondestructive and does not require any chemical preactivation or the presence of reactive groups on the substrate surface. Contrary to current antifouling modifications, the developed coating can be built on various classes of substrates and preserves its antifouling properties even in undiluted blood plasma. The new technique might be used for fabrication of biotechnological and biomedical devices with tailor-made functions that will not be impaired by fouling from ambient biological media.
Nanocomposite Ti/hydrocarbon plasma polymer (Ti/ppCH) films were deposited by DC magnetron sputtering of titanium target in n-hexane, argon, or a mixture of these two gases. The resultant films were heterogeneous, with inorganic regions of nanometer scale distributed within a plasma polymer matrix. The titanium content was controlled by adjusting the argon/n-hexane ratio in the working gas. In the pure n-hexane atmosphere, the Ti concentration was found to be below 1 at %, whereas in pure argon it reached 20 at %, as measured by Rutherford backscattering spectroscopy and elastic recoil detection analysis (RBS/ERDA). A high level of titanium oxidation is detected with TiO(2), substoichiometric titania, and titanium carbide, composing an inorganic phase of the composite films. In addition, high hydrogen content is detected in films rich with titanium. Ti-deficient and Ti-rich films proved equally good substrates for adhesion and growth of cultured human osteoblast-like MG 63 cells. In these cells, the population densities on days 1, 3, and 7 after seeding, spreading area on day 1, formation of talin-containing focal adhesion plaques as well as concentrations of talin and osteocalcin (per mg of protein) were comparable to the values obtained in cells on the reference cell culture materials, represented by microscopic glass coverslips or a polystyrene dish. An interesting finding was made when the Ti/ppCH films were seeded with calf pulmonary artery endothelial cells of the line CPAE. The cell population densities, the spreading area and also the concentration of von Willebrand factor, a marker of endothelial cell maturation, were significantly higher on Ti-rich than on Ti-deficient films. On Ti-rich films, these parameters were also higher or similar in comparison with the reference cell culture materials. Thus, both types of films could be used for coating bone implants, of which the Ti-rich film remains effective in enhancing the endothelialization of blood contacting artificial materials.
- MeSH
- biokompatibilní materiály chemie MeSH
- buněčná adheze MeSH
- buněčná diferenciace MeSH
- buněčné linie MeSH
- endoteliální buňky cytologie fyziologie MeSH
- financování organizované MeSH
- lidé MeSH
- magnetismus MeSH
- nanokompozity chemie MeSH
- osteoblasty cytologie fyziologie MeSH
- osteokalcin metabolismus MeSH
- povrchové vlastnosti MeSH
- skot MeSH
- talin metabolismus MeSH
- testování materiálů MeSH
- titan chemie MeSH
- uhlovodíky chemie MeSH
- von Willebrandův faktor metabolismus MeSH
- zvířata MeSH
- Check Tag
- lidé MeSH
- skot MeSH
- zvířata MeSH