First-degree relatives of patients diagnosed with schizophrenia (SZ-FDRs) show similar patterns of brain abnormalities and cognitive alterations to patients, albeit with smaller effect sizes. First-degree relatives of patients diagnosed with bipolar disorder (BD-FDRs) show divergent patterns; on average, intracranial volume is larger compared to controls, and findings on cognitive alterations in BD-FDRs are inconsistent. Here, we performed a meta-analysis of global and regional brain measures (cortical and subcortical), current IQ, and educational attainment in 5,795 individuals (1,103 SZ-FDRs, 867 BD-FDRs, 2,190 controls, 942 schizophrenia patients, 693 bipolar patients) from 36 schizophrenia and/or bipolar disorder family cohorts, with standardized methods. Compared to controls, SZ-FDRs showed a pattern of widespread thinner cortex, while BD-FDRs had widespread larger cortical surface area. IQ was lower in SZ-FDRs (d = -0.42, p = 3 × 10-5 ), with weak evidence of IQ reductions among BD-FDRs (d = -0.23, p = .045). Both relative groups had similar educational attainment compared to controls. When adjusting for IQ or educational attainment, the group-effects on brain measures changed, albeit modestly. Changes were in the expected direction, with less pronounced brain abnormalities in SZ-FDRs and more pronounced effects in BD-FDRs. To conclude, SZ-FDRs and BD-FDRs show a differential pattern of structural brain abnormalities. In contrast, both had lower IQ scores and similar school achievements compared to controls. Given that brain differences between SZ-FDRs and BD-FDRs remain after adjusting for IQ or educational attainment, we suggest that differential brain developmental processes underlying predisposition for schizophrenia or bipolar disorder are likely independent of general cognitive impairment.
- MeSH
- bipolární porucha komplikace diagnostické zobrazování patologie MeSH
- genetická predispozice k nemoci * MeSH
- inteligence fyziologie MeSH
- kognitivní dysfunkce diagnostické zobrazování patologie MeSH
- lidé MeSH
- magnetická rezonanční tomografie MeSH
- neurozobrazování * MeSH
- rodina MeSH
- schizofrenie komplikace diagnostické zobrazování etiologie patologie MeSH
- stupeň vzdělání * MeSH
- Check Tag
- lidé MeSH
- Publikační typ
- časopisecké články MeSH
- metaanalýza MeSH
- multicentrická studie MeSH
- práce podpořená grantem MeSH
- Research Support, N.I.H., Extramural MeSH
- Research Support, U.S. Gov't, Non-P.H.S. MeSH
Schizophrenia has a heritability of 60-80%1, much of which is attributable to common risk alleles. Here, in a two-stage genome-wide association study of up to 76,755 individuals with schizophrenia and 243,649 control individuals, we report common variant associations at 287 distinct genomic loci. Associations were concentrated in genes that are expressed in excitatory and inhibitory neurons of the central nervous system, but not in other tissues or cell types. Using fine-mapping and functional genomic data, we identify 120 genes (106 protein-coding) that are likely to underpin associations at some of these loci, including 16 genes with credible causal non-synonymous or untranslated region variation. We also implicate fundamental processes related to neuronal function, including synaptic organization, differentiation and transmission. Fine-mapped candidates were enriched for genes associated with rare disruptive coding variants in people with schizophrenia, including the glutamate receptor subunit GRIN2A and transcription factor SP4, and were also enriched for genes implicated by such variants in neurodevelopmental disorders. We identify biological processes relevant to schizophrenia pathophysiology; show convergence of common and rare variant associations in schizophrenia and neurodevelopmental disorders; and provide a resource of prioritized genes and variants to advance mechanistic studies.
- MeSH
- alely MeSH
- celogenomová asociační studie * MeSH
- genetická predispozice k nemoci genetika MeSH
- genomika MeSH
- jednonukleotidový polymorfismus genetika MeSH
- lidé MeSH
- schizofrenie * genetika MeSH
- Check Tag
- lidé MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- Research Support, N.I.H., Extramural MeSH
BACKGROUND: Sex differences in incidence and/or presentation of schizophrenia (SCZ), major depressive disorder (MDD), and bipolar disorder (BIP) are pervasive. Previous evidence for shared genetic risk and sex differences in brain abnormalities across disorders suggest possible shared sex-dependent genetic risk. METHODS: We conducted the largest to date genome-wide genotype-by-sex (G×S) interaction of risk for these disorders using 85,735 cases (33,403 SCZ, 19,924 BIP, and 32,408 MDD) and 109,946 controls from the PGC (Psychiatric Genomics Consortium) and iPSYCH. RESULTS: Across disorders, genome-wide significant single nucleotide polymorphism-by-sex interaction was detected for a locus encompassing NKAIN2 (rs117780815, p = 3.2 × 10-8), which interacts with sodium/potassium-transporting ATPase (adenosine triphosphatase) enzymes, implicating neuronal excitability. Three additional loci showed evidence (p < 1 × 10-6) for cross-disorder G×S interaction (rs7302529, p = 1.6 × 10-7; rs73033497, p = 8.8 × 10-7; rs7914279, p = 6.4 × 10-7), implicating various functions. Gene-based analyses identified G×S interaction across disorders (p = 8.97 × 10-7) with transcriptional inhibitor SLTM. Most significant in SCZ was a MOCOS gene locus (rs11665282, p = 1.5 × 10-7), implicating vascular endothelial cells. Secondary analysis of the PGC-SCZ dataset detected an interaction (rs13265509, p = 1.1 × 10-7) in a locus containing IDO2, a kynurenine pathway enzyme with immunoregulatory functions implicated in SCZ, BIP, and MDD. Pathway enrichment analysis detected significant G×S interaction of genes regulating vascular endothelial growth factor receptor signaling in MDD (false discovery rate-corrected p < .05). CONCLUSIONS: In the largest genome-wide G×S analysis of mood and psychotic disorders to date, there was substantial genetic overlap between the sexes. However, significant sex-dependent effects were enriched for genes related to neuronal development and immune and vascular functions across and within SCZ, BIP, and MDD at the variant, gene, and pathway levels.
- MeSH
- bipolární porucha genetika MeSH
- celogenomová asociační studie MeSH
- depresivní porucha unipolární * genetika MeSH
- endoteliální buňky MeSH
- genetická predispozice k nemoci MeSH
- jednonukleotidový polymorfismus MeSH
- lidé MeSH
- pohlavní dimorfismus * MeSH
- psychotické poruchy * genetika MeSH
- receptory vaskulárního endoteliálního růstového faktoru MeSH
- schizofrenie genetika MeSH
- sulfurtransferasy MeSH
- Check Tag
- lidé MeSH
- mužské pohlaví MeSH
- ženské pohlaví MeSH
- Publikační typ
- časopisecké články MeSH
- Research Support, N.I.H., Extramural MeSH
BACKGROUND: Schizophrenia and bipolar disorder share genetic liability, and some structural brain abnormalities are common to both conditions. First-degree relatives of patients with schizophrenia (FDRs-SZ) show similar brain abnormalities to patients, albeit with smaller effect sizes. Imaging findings in first-degree relatives of patients with bipolar disorder (FDRs-BD) have been inconsistent in the past, but recent studies report regionally greater volumes compared with control subjects. METHODS: We performed a meta-analysis of global and subcortical brain measures of 6008 individuals (1228 FDRs-SZ, 852 FDRs-BD, 2246 control subjects, 1016 patients with schizophrenia, 666 patients with bipolar disorder) from 34 schizophrenia and/or bipolar disorder family cohorts with standardized methods. Analyses were repeated with a correction for intracranial volume (ICV) and for the presence of any psychopathology in the relatives and control subjects. RESULTS: FDRs-BD had significantly larger ICV (d = +0.16, q < .05 corrected), whereas FDRs-SZ showed smaller thalamic volumes than control subjects (d = -0.12, q < .05 corrected). ICV explained the enlargements in the brain measures in FDRs-BD. In FDRs-SZ, after correction for ICV, total brain, cortical gray matter, cerebral white matter, cerebellar gray and white matter, and thalamus volumes were significantly smaller; the cortex was thinner (d < -0.09, q < .05 corrected); and third ventricle was larger (d = +0.15, q < .05 corrected). The findings were not explained by psychopathology in the relatives or control subjects. CONCLUSIONS: Despite shared genetic liability, FDRs-SZ and FDRs-BD show a differential pattern of structural brain abnormalities, specifically a divergent effect in ICV. This may imply that the neurodevelopmental trajectories leading to brain anomalies in schizophrenia or bipolar disorder are distinct.
- MeSH
- bipolární porucha * genetika patologie MeSH
- dospělí MeSH
- genetická predispozice k nemoci * MeSH
- kohortové studie MeSH
- lidé středního věku MeSH
- lidé MeSH
- mladý dospělý MeSH
- mozek patologie MeSH
- schizofrenie * genetika patologie MeSH
- Check Tag
- dospělí MeSH
- lidé středního věku MeSH
- lidé MeSH
- mladý dospělý MeSH
- mužské pohlaví MeSH
- ženské pohlaví MeSH
- Publikační typ
- časopisecké články MeSH
- metaanalýza MeSH
- práce podpořená grantem MeSH
- Research Support, N.I.H., Extramural MeSH
- Research Support, N.I.H., Intramural MeSH
- Research Support, U.S. Gov't, Non-P.H.S. MeSH
- studie na dvojčatech MeSH
IMPORTANCE: A recently published study of national data by McGrath et al in 2014 showed increased risk of schizophrenia (SCZ) in offspring associated with both early and delayed parental age, consistent with a U-shaped relationship. However, it remains unclear if the risk to the child is due to psychosocial factors associated with parental age or if those at higher risk for SCZ tend to have children at an earlier or later age. OBJECTIVE: To determine if there is a genetic association between SCZ and age at first birth (AFB) using genetically informative but independently ascertained data sets. DESIGN, SETTING, AND PARTICIPANTS: This investigation used multiple independent genome-wide association study data sets. The SCZ sample comprised 18 957 SCZ cases and 22 673 controls in a genome-wide association study from the second phase of the Psychiatric Genomics Consortium, and the AFB sample comprised 12 247 genotyped women measured for AFB from the following 4 community cohorts: Estonia (Estonian Genome Center Biobank, University of Tartu), the Netherlands (LifeLines Cohort Study), Sweden (Swedish Twin Registry), and the United Kingdom (TwinsUK). Schizophrenia genetic risk for each woman in the AFB community sample was estimated using genetic effects inferred from the SCZ genome-wide association study. MAIN OUTCOMES AND MEASURES: We tested if SCZ genetic risk was a significant predictor of response variables based on published polynomial functions that described the relationship between maternal age and SCZ risk in offspring in Denmark. We substituted AFB for maternal age in these functions, one of which was corrected for the age of the father, and found that the fit was superior for the model without adjustment for the father's age. RESULTS: We observed a U-shaped relationship between SCZ risk and AFB in the community cohorts, consistent with the previously reported relationship between SCZ risk in offspring and maternal age when not adjusted for the age of the father. We confirmed that SCZ risk profile scores significantly predicted the response variables (coefficient of determination R2 = 1.1E-03, P = 4.1E-04), reflecting the published relationship between maternal age and SCZ risk in offspring by McGrath et al in 2014. CONCLUSIONS AND RELEVANCE: This study provides evidence for a significant overlap between genetic factors associated with risk of SCZ and genetic factors associated with AFB. It has been reported that SCZ risk associated with increased maternal age is explained by the age of the father and that de novo mutations that occur more frequently in the germline of older men are the underlying causal mechanism. This explanation may need to be revised if, as suggested herein and if replicated in future studies, there is also increased genetic risk of SCZ in older mothers.
- MeSH
- alely MeSH
- celogenomová asociační studie * MeSH
- dospělí MeSH
- fenotyp MeSH
- genetická predispozice k nemoci genetika MeSH
- kohortové studie MeSH
- lidé MeSH
- pořadí narození * MeSH
- riziko MeSH
- schizofrenie genetika MeSH
- těhotenství MeSH
- věk matky * MeSH
- Check Tag
- dospělí MeSH
- lidé MeSH
- těhotenství MeSH
- ženské pohlaví MeSH
- Publikační typ
- časopisecké články MeSH
- Geografické názvy
- Dánsko MeSH
- MeSH
- afektivní psychózy genetika MeSH
- amygdala fyziologie MeSH
- emoce fyziologie MeSH
- interpretace statistických dat MeSH
- kohortové studie MeSH
- kyslík diagnostické užití krev MeSH
- lidé MeSH
- magnetická rezonanční tomografie metody využití MeSH
- muži MeSH
- osobnostní dotazník statistika a číselné údaje MeSH
- rozhovory jako téma MeSH
- rozložení podle pohlaví MeSH
- serotonin nedostatek sekrece MeSH
- ženy MeSH
- Check Tag
- lidé MeSH
2nd ed. xvi, 748 s. : tab., grafy ; 30 cm
- MeSH
- dítě MeSH
- lidé MeSH
- modely neurologické MeSH
- neurologické manifestace MeSH
- psychiatrie MeSH
- Tourettův syndrom diagnóza MeSH
- Check Tag
- dítě MeSH
- lidé MeSH
- mužské pohlaví MeSH
- Publikační typ
- kazuistiky MeSH