During the process of intra-uterine mammalian fetal development, the oxygen supply in growing fetus is low. A rapid switch from glycolysis-based metabolism to oxidative phosphorylation (OXPHOS) must proceed during early postnatal adaptation to extra-uterine conditions. Mitochondrial biogenesis and mammalian mitochondrial F(o)F(1)-ATP synthase assembly (complex V, EC 3.6.3.14, ATPase) are complex processes regulated by multiple transcription regulators and assembly factors. Using RNA expression analysis of rat liver and skeletal tissue (Rattus norvegicus, Berkenhout, 1769), we describe the expression profiles of 20 genes involved in mitochondrial maturation and ATP synthase biogenesis in detail between the 16th and 22nd day of gestation and the first 4 days of life. We observed that the most important expression shift occurred in the liver between the 20th and 22nd day of gestation, indicating that the fetus prepares for birth about two days before parturition. The detailed mechanism regulating the perinatal adaptation process is not yet known. Deeper insights in perinatal physiological development will help to assess mitochondrial dysfunction in the broader context of cell metabolism in preterm newborns or neonates with poor adaptation to extra-uterine life.
- MeSH
- biogeneze organel MeSH
- fyziologická adaptace * MeSH
- játra embryologie růst a vývoj metabolismus MeSH
- novorozená zvířata růst a vývoj metabolismus MeSH
- pilotní projekty MeSH
- potkani Wistar MeSH
- protonové ATPasy biosyntéza MeSH
- stanovení celkové genové exprese MeSH
- svaly embryologie metabolismus MeSH
- těhotenství MeSH
- vývoj svalů MeSH
- zvířata MeSH
- Check Tag
- těhotenství MeSH
- ženské pohlaví MeSH
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- srovnávací studie MeSH
A spontaneous mutant of Methanothermobacter thermautotrophicus resistant toward the ATP-synthase inhibitor N,N'-dicyclohexylcarbodiimide (DCCD) was isolated. DCCD normally inhibits methanogenic electron-transport-driven ATP synthesis, however, the DCCD-resistant strain exhibited methanogenesis in the presence of 300 micromol/L DCCD. Total ATP synthesis was shown to be higher in the mutant strain, both in the presence and absence of DCCD. These results suggested a modification in the ATP-synthesizing system of the mutant strain. Using Blue Native PAGE combined with MALDI TOF/TOF mass spectrometry, increased concentrations of both the A(1) and A(o) subcomplexes of the A(1)A(o)-type synthase were identified in the mutant strain. However, no alterations were found in the structural genes (atp) for the A(1)A(o) ATP synthase. The results imply that DCCD resistance is a consequence of increased A(1)A(o) ATP synthase expression, and suggest that genes involved in regulating synthase expression are responsible for DCCD resistance.
- MeSH
- adenosintrifosfát metabolismus MeSH
- archeální proteiny biosyntéza MeSH
- dicyklohexylkarbodiimid toxicita MeSH
- elektroforéza v polyakrylamidovém gelu MeSH
- exprese genu MeSH
- financování organizované MeSH
- inhibitory enzymů toxicita MeSH
- léková rezistence MeSH
- methan metabolismus MeSH
- Methanobacteriaceae MeSH
- mutace MeSH
- oxidace-redukce MeSH
- protonové ATPasy biosyntéza MeSH
- spektrometrie hmotnostní - ionizace laserem za účasti matrice MeSH
- upregulace MeSH