"CZ.02.1.01/0.0/0.0/ 16_019/0000797"
Dotaz
Zobrazit nápovědu
Pattern 1-hydroxy-N-(2,4,5-trichlorophenyl)-2-naphthamide and the thirteen original carbamates derived from it were prepared and characterized. All the compounds were tested against Staphylococcus aureus ATCC 29213 as a reference and quality control strain and in addition against three clinical isolates of methicillin-resistant S. aureus (MRSA). Moreover, the compounds were evaluated against Enterococcus faecalis ATCC 29212, and preliminary in vitro cytotoxicity of the compounds was assessed using the human monocytic leukemia cell line (THP-1). The lipophilicity of the prepared compounds was experimentally determined and correlated with biological activity. While pattern anilide had no antibacterial activity, the prepared carbamates demonstrated high antistaphylococcal activity comparable to the used standards (ampicillin and ciprofloxacin), which unfortunately were ineffective against E. feacalis. 2-[(2,4,5-Trichlorophenyl)carba- moyl]naphthalen-1-yl ethylcarbamate (2) and 2-[(2,4,5-trichlorophenyl)carbamoyl]naphthalen-1-yl butylcarbamate (4) expressed the nanomolar minimum inhibitory concentrations (MICs 0.018-0.064 μM) against S. aureus and at least two other MRSA isolates. Microbicidal effects based on the minimum bactericidal concentrations (MBCs) against all the tested staphylococci were found for nine carbamates, while 2-[(2,4,5-trichlorophenyl)carbamoyl]naphthalen-1-yl heptylcarbamate (7) and 2-[(2,4,5-trichlorophenyl)carbamoyl]naphthalen-1-yl (4-phenylbutyl)carbamate (14) demonstrated MBCs in the range of 0.124-0.461 μM. The selectivity index (SI) for most investigated carbamates was >20 and for some derivatives even >100. The performed tests did not show an effect on the damage to the bacterial membrane, while the compounds were able to inhibit the respiratory chain of S. aureus.
- Publikační typ
- časopisecké články MeSH
A series of eighteen 4-chlorocinnamanilides and eighteen 3,4-dichlorocinnamanilides were designed, prepared and characterized. All compounds were evaluated for their activity against gram-positive bacteria and against two mycobacterial strains. Viability on both cancer and primary mammalian cell lines was also assessed. The lipophilicity of the compounds was experimentally determined and correlated together with other physicochemical properties of the prepared derivatives with biological activity. 3,4-Dichlorocinnamanilides showed a broader spectrum of action and higher antibacterial efficacy than 4-chlorocinnamanilides; however, all compounds were more effective or comparable to clinically used drugs (ampicillin, isoniazid, rifampicin). Of the thirty-six compounds, six derivatives showed submicromolar activity against Staphylococcus aureus and clinical isolates of methicillin-resistant S. aureus (MRSA). (2E)-N-[3,5-bis(trifluoromethyl)phenyl]- 3-(4-chlorophenyl)prop-2-enamide was the most potent in series 1. (2E)-N-[3,5-bis(Trifluoromethyl)phenyl]-3-(3,4-dichlorophenyl)prop-2-enamide, (2E)-3-(3,4-dichlorophenyl)-N-[3-(trifluoromethyl)phenyl]prop-2-enamide, (2E)-3-(3,4-dichloro- phenyl)-N-[4-(trifluoromethyl)phenyl]prop-2-enamide and (2E)-3-(3,4-dichlorophenyl)- N-[4-(trifluoromethoxy)phenyl]prop-2-enamide were the most active in series 2 and in addition to activity against S. aureus and MRSA were highly active against Enterococcus faecalis and vancomycin-resistant E. faecalis isolates and against fast-growing Mycobacterium smegmatis and against slow-growing M. marinum, M. tuberculosis non-hazardous test models. In addition, the last three compounds of the above-mentioned showed insignificant cytotoxicity to primary porcine monocyte-derived macrophages.
- MeSH
- ampicilin farmakologie MeSH
- antibakteriální látky farmakologie MeSH
- methicilin rezistentní Staphylococcus aureus * MeSH
- mikrobiální testy citlivosti MeSH
- Mycobacterium tuberculosis * MeSH
- prasata MeSH
- savci MeSH
- stafylokokové infekce * MeSH
- Staphylococcus aureus MeSH
- zvířata MeSH
- Check Tag
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
In Part I, by using 31P-NMR spectroscopy, we have shown that isolated granum and stroma thylakoid membranes (TMs), in addition to the bilayer, display two isotropic phases and an inverted hexagonal (HII) phase; saturation transfer experiments and selective effects of lipase and thermal treatments have shown that these phases arise from distinct, yet interconnectable structural entities. To obtain information on the functional roles and origin of the different lipid phases, here we performed spectroscopic measurements and inspected the ultrastructure of these TM fragments. Circular dichroism, 77 K fluorescence emission spectroscopy, and variable chlorophyll-a fluorescence measurements revealed only minor lipase- or thermally induced changes in the photosynthetic machinery. Electrochromic absorbance transients showed that the TM fragments were re-sealed, and the vesicles largely retained their impermeabilities after lipase treatments-in line with the low susceptibility of the bilayer against the same treatment, as reflected by our 31P-NMR spectroscopy. Signatures of HII-phase could not be discerned with small-angle X-ray scattering-but traces of HII structures, without long-range order, were found by freeze-fracture electron microscopy (FF-EM) and cryo-electron tomography (CET). EM and CET images also revealed the presence of small vesicles and fusion of membrane particles, which might account for one of the isotropic phases. Interaction of VDE (violaxanthin de-epoxidase, detected by Western blot technique in both membrane fragments) with TM lipids might account for the other isotropic phase. In general, non-bilayer lipids are proposed to play role in the self-assembly of the highly organized yet dynamic TM network in chloroplasts.
Build-up of the energized state of thylakoid membranes and the synthesis of ATP are warranted by organizing their bulk lipids into a bilayer. However, the major lipid species of these membranes, monogalactosyldiacylglycerol, is a non-bilayer lipid. It has also been documented that fully functional thylakoid membranes, in addition to the bilayer, contain an inverted hexagonal (HII) phase and two isotropic phases. To shed light on the origin of these non-lamellar phases, we performed 31P-NMR spectroscopy experiments on sub-chloroplast particles of spinach: stacked, granum and unstacked, stroma thylakoid membranes. These membranes exhibited similar lipid polymorphism as the whole thylakoids. Saturation transfer experiments, applying saturating pulses at characteristic frequencies at 5 °C, provided evidence for distinct lipid phases-with component spectra very similar to those derived from mathematical deconvolution of the 31P-NMR spectra. Wheat-germ lipase treatment of samples selectively eliminated the phases exhibiting sharp isotropic peaks, suggesting easier accessibility of these lipids compared to the bilayer and the HII phases. Gradually increasing lipid exchanges were observed between the bilayer and the two isotropic phases upon gradually elevating the temperature from 5 to 35 °C, suggesting close connections between these lipid phases. Data concerning the identity and structural and functional roles of different lipid phases will be presented in the accompanying paper.
Light quality significantly influences plant metabolism, growth and development. Recently, we have demonstrated that leaves of barley and other plant species grown under monochromatic green light (500-590 nm) accumulated a large pool of chlorophyll a (Chl a) intermediates with incomplete hydrogenation of their phytyl chains. In this work, we studied accumulation of these geranylgeranylated Chls a and b in pigment-protein complexes (PPCs) of Arabidopsis plants acclimated to green light and their structural-functional consequences on the photosynthetic apparatus. We found that geranylgeranylated Chls are present in all major PPCs, although their presence was more pronounced in light-harvesting complex II (LHCII) and less prominent in supercomplexes of photosystem II (PSII). Accumulation of geranylgeranylated Chls hampered the formation of PSII and PSI super- and megacomplexes in the thylakoid membranes as well as their assembly into chiral macrodomains; it also lowered the temperature stability of the PPCs, especially that of LHCII trimers, which led to their monomerization and an anomaly in the photoprotective mechanism of non-photochemical quenching. Role of geranylgeranylated Chls in adverse effects on photosynthetic apparatus of plants acclimated to green light is discussed.
Barley (Hordeum vulgare) accumulates phenolic compounds (PhCs), which play a key role in plant defense against environmental stressors as antioxidants or UV screening compounds. The influence of light and atmospheric CO2 concentration ([CO2]) on the accumulation and localization of PhCs in barley leaves was examined for two varieties with different tolerances to oxidative stress. PhC localization was visualized in vivo using fluorescence microscopy. Close relationships were found between fluorescence-determined localization of PhCs in barley leaves and PhC content estimated using liquid chromatography coupled with mass spectroscopy detection. Light intensity had the strongest effect on the accumulation of PhCs, but the total PhC content was similar at elevated [CO2], minimizing the differences between high and low light. PhCs localized preferentially near the surfaces of leaves, but under low light, an increasing allocation of PhCs in deeper mesophyll layers was observed. The PhC profile was significantly different between barley varieties. The relatively tolerant variety accumulated significantly more hydroxycinnamic acids, indicating that these PhCs may play a more prominent role in oxidative stress prevention. Our research presents novel evidence that [CO2] modulates the accumulation of PhCs in barley leaves. Mesophyll cells, rather than epidermal cells, were most responsive to environmental stimuli in terms of PhC accumulation.
- Publikační typ
- časopisecké články MeSH
A series of nineteen novel ring-substituted N-arylcinnamanilides was synthesized and characterized. All investigated compounds were tested against Staphylococcus aureus as the reference strain, two clinical isolates of methicillin-resistant S. aureus (MRSA), and Mycobacterium tuberculosis. (2E)-N-[3-Fluoro-4-(trifluoromethyl)phenyl]-3-phenylprop-2-enamide showed even better activity (minimum inhibitory concentration (MIC) 25.9 and 12.9 μM) against MRSA isolates than the commonly used ampicillin (MIC 45.8 μM). The screening of the cell viability was performed using THP1-BlueTM NF-κB cells and, except for (2E)-N-(4-bromo-3-chlorophenyl)-3-phenylprop-2-enamide (IC50 6.5 μM), none of the discussed compounds showed any significant cytotoxic effect up to 20 μM. Moreover, all compounds were tested for their anti-inflammatory potential; several compounds attenuated the lipopolysaccharide-induced NF-κB activation and were more potent than the parental cinnamic acid. The lipophilicity values were specified experimentally as well. In addition, in silico approximation of the lipophilicity values was performed employing a set of free/commercial clogP estimators, corrected afterwards by the corresponding pKa calculated at physiological pH and subsequently cross-compared with the experimental parameters. The similarity-driven property space evaluation of structural analogs was carried out using the principal component analysis, Tanimoto metrics, and Kohonen mapping.
- MeSH
- ampicilin farmakologie MeSH
- analýza hlavních komponent MeSH
- antiflogistika farmakologie MeSH
- cinnamáty chemická syntéza MeSH
- inhibiční koncentrace 50 MeSH
- koncentrace vodíkových iontů MeSH
- lidé MeSH
- methicilin rezistentní Staphylococcus aureus účinky léků MeSH
- mikrobiální testy citlivosti MeSH
- mikrovlny MeSH
- molekulární modely MeSH
- Mycobacterium tuberculosis účinky léků MeSH
- NF-kappa B metabolismus MeSH
- Staphylococcus aureus účinky léků MeSH
- THP-1 buňky MeSH
- viabilita buněk účinky léků MeSH
- vztahy mezi strukturou a aktivitou MeSH
- zánět MeSH
- Check Tag
- lidé MeSH
- Publikační typ
- časopisecké články MeSH
The sudden interruption of recurring larch budmoth (LBM; Zeiraphera diniana or griseana Gn.) outbreaks across the European Alps after 1982 was surprising, because populations had regularly oscillated every 8-9 years for the past 1200 years or more. Although ecophysiological evidence was limited and underlying processes remained uncertain, climate change has been indicated as a possible driver of this disruption. An unexpected, recent return of LBM population peaks in 2017 and 2018 provides insight into this insect's climate sensitivity. Here, we combine meteorological and dendrochronological data to explore the influence of temperature variation and atmospheric circulation on cyclic LBM outbreaks since the early 1950s. Anomalous cold European winters, associated with a persistent negative phase of the North Atlantic Oscillation, coincide with four consecutive epidemics between 1953 and 1982, and any of three warming-induced mechanisms could explain the system's failure thereafter: (1) high egg mortality, (2) asynchrony between egg hatch and foliage growth, and (3) upward shifts of outbreak epicentres. In demonstrating that LBM populations continued to oscillate every 8-9 years at sub-outbreak levels, this study emphasizes the relevance of winter temperatures on trophic interactions between insects and their host trees, as well as the importance of separating natural from anthropogenic climate forcing on population behaviour.
- MeSH
- epidemický výskyt choroby MeSH
- klimatické změny MeSH
- modřín * MeSH
- můry * MeSH
- populační dynamika MeSH
- zvířata MeSH
- Check Tag
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH