BACKGROUND: Tumor necrosis factor-related apoptosis-inducing ligand (TRAIL) is known to be associated with poor prognosis after cardiovascular events. We aimed to assess the dynamic changes in TRAIL levels and the relation of TRAIL level to stroke severity, its impact on the short-term outcomes, and its association with markers of cardiac injury in patients after acute stroke. METHODS: Between August 2020 and August 2021, 120 consecutive patients, 104 after acute ischemic stroke (AIS), 76 receiving reperfusion therapy, and 16 patients after intracerebral hemorrhage (ICH) were enrolled in our study. Blood samples were obtained from patients at the time of admission, 24 h later, and 48 h later to determine the plasma level of tumor necrosis factor-related apoptosis-inducing ligand (TRAIL), N-terminal prohormone of brain natriuretic peptide (NT-proBNP), and high-sensitive Troponin I (hs-TnI). Twelve-lead ECGs were obtained at the time of admission, 24 h later, 48 h later, and at the release of the patients. Evaluations were performed using the National Institutes of Health Stroke Scale (NIHSS) at the time of admission and using the modified Rankin Scale (mRS) 90 days following the patient's discharge from the hospital. RESULTS: We observed a connection between lower TRAIL levels and stroke severity evaluated using the NIHSS (p = 0.044) on the first day. Lower TRAIL showed an association with severe disability and death as evaluated using the mRS at 90 days, both after 24 (p = 0.0022) and 48 h (p = 0.044) of hospitalization. Moreover, we observed an association between lower TRAIL and NT-proBNP elevation at the time of admission (p = 0.039), after 24 (p = 0.043), and after 48 h (p = 0.023) of hospitalization. In the ECG analysis, lower TRAIL levels were associated with the occurrence of premature ventricular extrasystoles (p = 0.043), and there was an association with prolonged QTc interval (p = 0.052). CONCLUSIONS: The results show that lower TRAIL is associated with stroke severity, unfavorable functional outcome, and short-term mortality in patients after acute ischemic stroke. Moreover, we described the association with markers of cardiac injury and ECG changes.
- Publication type
- Journal Article MeSH
The COVID-19 pandemic presents several challenges for managing patients with acute coronary syndrome (ACS). Modified treatment algorithms have been proposed for the pandemic. We assessed new algorithms proposed by The European Association of Percutaneous Cardiovascular Interventions (EAPCI) and the Acute Cardiovascular Care Association (ACCA) on patients with ACS admitted to the hospital during the COVID-19 pandemic. The COVID-19 period group (CPG) consisted of patients admitted into a high-volume centre in Prague between 1 February 2020 and 30 May 2020 (n = 181). The reference group (RG) included patients who had been admitted between 1 October 2018 and 31 January 2020 (n = 834). The proportions of patients with different types of ACS admitted before and during the pandemic did not differ significantly: in all ACS patients, KILLIP III-IV class was present in 13.9% in RG and in 9.4% of patients in CPG (p = 0.082). In NSTE-ACS patients, the ejection fraction was lower in the CPG than in the RG (44.7% vs. 50.7%, respectively; p < 0.001). The time from symptom onset to first medical contact did not differ between CPG and RG patients in the respective NSTE-ACS and STEMI groups. The time to early invasive treatment in NSTE-ACS patients and the time to reperfusion in STEMI patients were not significantly different between the RG and the CPG. In-hospital mortality did not differ between the groups in NSTE-ACS patients (odds ratio in the CPG 0.853, 95% confidence interval (CI) 0.247 to 2.951; p = 0.960) nor in STEMI patients (odds ratio in CPG 1.248, 95% CI 0.566 to 2.749; p = 0.735). Modified treatment strategies for ACS during the COVID-19 pandemic did not cause treatment delays. Hospital mortality did not differ.
- Publication type
- Journal Article MeSH