Q124618976
Dotaz
Zobrazit nápovědu
TP53 gene abnormalities represent the most important biomarker in chronic lymphocytic leukemia (CLL). Altered protein modifications could also influence p53 function, even in the wild-type protein. We assessed the impact of p53 protein phosphorylations on p53 functions as an alternative inactivation mechanism. We studied p53 phospho-profiles induced by DNA-damaging agents (fludarabine, doxorubicin) in 71 TP53-intact primary CLL samples. Doxorubicin induced two distinct phospho-profiles: profile I (heavily phosphorylated) and profile II (hypophosphorylated). Profile II samples were less capable of activating p53 target genes upon doxorubicin exposure, resembling TP53-mutant samples at the transcriptomic level, whereas standard p53 signaling was triggered in profile I. ATM locus defects were more common in profile II. The samples also differed in the basal activity of the hypoxia pathway: the highest level was detected in TP53-mutant samples, followed by profile II and profile I. Our study suggests that wild-type TP53 CLL cells with less phosphorylated p53 show TP53-mutant-like behavior after DNA damage. p53 hypophosphorylation and the related lower ability to respond to DNA damage are linked to ATM locus defects and the higher basal activity of the hypoxia pathway.
- MeSH
- ATM protein genetika metabolismus MeSH
- chronická lymfatická leukemie * genetika MeSH
- doxorubicin farmakologie MeSH
- fosforylace MeSH
- geny p53 MeSH
- hypoxie genetika MeSH
- lidé MeSH
- nádorový supresorový protein p53 * metabolismus MeSH
- poškození DNA MeSH
- Check Tag
- lidé MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
Expansions of trinucleotide repeats (TNRs) are associated with genetic disorders such as Friedreich's ataxia. The tumor suppressor p53 is a central regulator of cell fate in response to different types of insults. Sequence and structure-selective modes of DNA recognition are among the main attributes of p53 protein. The focus of this work was analysis of the p53 structure-selective recognition of TNRs associated with human neurodegenerative diseases. Here, we studied binding of full length p53 and several deletion variants to TNRs folded into DNA hairpins or loops. We demonstrate that p53 binds to all studied non-B DNA structures, with a preference for non-B DNA structures formed by pyrimidine (Py) rich strands. Using deletion mutants, we determined the C-terminal DNA binding domain of p53 to be crucial for recognition of such non-B DNA structures. We also observed that p53 in vitro prefers binding to the Py-rich strand over the purine (Pu) rich strand in non-B DNA substrates formed by sequence derived from the first intron of the frataxin gene. The binding of p53 to this region was confirmed using chromatin immunoprecipitation in human Friedreich's ataxia fibroblast and adenocarcinoma cells. Altogether these observations provide further evidence that p53 binds to TNRs' non-B DNA structures.
- MeSH
- DNA chemie metabolismus MeSH
- expanze trinukleotidových repetic * MeSH
- exprese genu MeSH
- Friedreichova ataxie genetika metabolismus MeSH
- interakční proteinové domény a motivy MeSH
- konformace nukleové kyseliny * MeSH
- lidé MeSH
- nádorový supresorový protein p53 chemie metabolismus MeSH
- pyrimidiny MeSH
- rekombinantní proteiny MeSH
- trinukleotidové repetice * MeSH
- vazba proteinů MeSH
- Check Tag
- lidé MeSH
- Publikační typ
- časopisecké články MeSH
Triplex DNA is implicated in a wide range of biological activities, including regulation of gene expression and genomic instability leading to cancer. The tumor suppressor p53 is a central regulator of cell fate in response to different type of insults. Sequence and structure specific modes of DNA recognition are core attributes of the p53 protein. The focus of this work is the structure-specific binding of p53 to DNA containing triplex-forming sequences in vitro and in cells and the effect on p53-driven transcription. This is the first DNA binding study of full-length p53 and its deletion variants to both intermolecular and intramolecular T.A.T triplexes. We demonstrate that the interaction of p53 with intermolecular T.A.T triplex is comparable to the recognition of CTG-hairpin non-B DNA structure. Using deletion mutants we determined the C-terminal DNA binding domain of p53 to be crucial for triplex recognition. Furthermore, strong p53 recognition of intramolecular T.A.T triplexes (H-DNA), stabilized by negative superhelicity in plasmid DNA, was detected by competition and immunoprecipitation experiments, and visualized by AFM. Moreover, chromatin immunoprecipitation revealed p53 binding T.A.T forming sequence in vivo. Enhanced reporter transactivation by p53 on insertion of triplex forming sequence into plasmid with p53 consensus sequence was observed by luciferase reporter assays. In-silico scan of human regulatory regions for the simultaneous presence of both consensus sequence and T.A.T motifs identified a set of candidate p53 target genes and p53-dependent activation of several of them (ABCG5, ENOX1, INSR, MCC, NFAT5) was confirmed by RT-qPCR. Our results show that T.A.T triplex comprises a new class of p53 binding sites targeted by p53 in a DNA structure-dependent mode in vitro and in cells. The contribution of p53 DNA structure-dependent binding to the regulation of transcription is discussed.
- MeSH
- aktivace transkripce genetika MeSH
- DNA vazebné proteiny chemie genetika MeSH
- DNA chemie genetika MeSH
- konformace nukleové kyseliny MeSH
- lidé MeSH
- nádorový supresorový protein p53 chemie genetika MeSH
- nukleotidové motivy genetika MeSH
- plazmidy genetika MeSH
- promotorové oblasti (genetika) MeSH
- regulační oblasti nukleových kyselin genetika MeSH
- sekvenční delece genetika MeSH
- vazebná místa MeSH
- Check Tag
- lidé MeSH
- Publikační typ
- časopisecké články MeSH
G-quadruplexes are four-stranded nucleic acid structures that are implicated in the regulation of transcription, translation and replication. Genome regions enriched in putative G-quadruplex motifs include telomeres and gene promoters. Tumour suppressor p53 plays a critical role in regulatory pathways leading to cell cycle arrest, DNA repair and apoptosis. In addition to transcriptional regulation mediated via sequence-specific DNA binding, p53 can selectively bind various non-B DNA structures. In the present study, wild-type p53 (wtp53) binding to G-quadruplex formed by MYC promoter nuclease hypersensitive element (NHE) III1 region was investigated. Wtp53 binding to MYC G-quadruplex is comparable to interaction with specific p53 consensus sequence (p53CON). Apart from the full-length wtp53, its isolated C-terminal region (aa 320-393) as well, is capable of high-affinity MYC G-quadruplex binding, suggesting its critical role in this type of interaction. Moreover, wtp53 binds to MYC promoter region containing putative G-quadruplex motif in two wtp53-expressing cell lines. The results suggest that wtp53 binding to G-quadruplexes can take part in transcriptional regulation of its target genes.
- MeSH
- cirkulární dichroismus MeSH
- DNA vazebné proteiny genetika metabolismus MeSH
- DNA genetika MeSH
- G-kvadruplexy * MeSH
- HCT116 buňky MeSH
- lidé MeSH
- nádorový supresorový protein p53 genetika metabolismus MeSH
- promotorové oblasti (genetika) genetika MeSH
- protoonkogenní proteiny c-myc genetika metabolismus MeSH
- regulace genové exprese MeSH
- vazba proteinů MeSH
- Check Tag
- lidé MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH