biomolecule
Dotaz
Zobrazit nápovědu
Metody pro studium jednotlivých biomolekul pomáhají objasnit jejich vlastnosti jinak skryté při měřeních v celém objemu vzorku. Velmi významnou metodou pro výzkum chování jednotlivých biomolekul je luminiscenční mikroskopie. Luminiscenční značky, které vykazují fotonovou up‑konverzi, přináší nové možnosti v této oblasti. Předpokládá se, že zjednoduší a přinesou větší rozšíření metod pro vizualizaci jednotlivých biomolekul, např. membránových receptorů, studium jejich interakcí v reálném čase a rovněž nové možnosti pro detekci jednotlivých biomolekul.
Single molecule methods allow us to explain properties of biomolecules on single molecule level, which are not apparent from bulk experiments. Luminescence microscopy is a very important method for single molecule experiments. Novel luminescent labels, which exhibit photon up‑conversion, revealed new possibilities in this field. It is considered that photon up‑conversion nanoparticles will allow for next development of single molecule methods and facilitate for visualization of individual biomolecules, e.g., membrane receptors, studies of their interactions in real time and also provide new possibilities for the detection of individual biomolecules.
Many dynamic interactions within the cell microenvironment modulate cell behavior and cell fate. However, the pathways and mechanisms behind cell-cell or cell-extracellular matrix interactions remain understudied, as they occur at a nanoscale level. Recent progress in nanotechnology allows for mimicking of the microenvironment at nanoscale in vitro; electron-beam lithography (EBL) is currently the most promising technique. Although this nanopatterning technique can generate nanostructures of good quality and resolution, it has resulted, thus far, in the production of only simple shapes (e.g., rectangles) over a relatively small area (100 × 100 μm), leaving its potential in biological applications unfulfilled. Here, we used EBL for cell-interaction studies by coating cell-culture-relevant material with electron-conductive indium tin oxide, which formed nanopatterns of complex nanohexagonal structures over a large area (500 × 500 μm). We confirmed the potential of EBL for use in cell-interaction studies by analyzing specific cell responses toward differentially distributed nanohexagons spaced at 1000, 500, and 250 nm. We found that our optimized technique of EBL with HaloTags enabled the investigation of broad changes to a cell-culture-relevant surface and can provide an understanding of cellular signaling mechanisms at a single-molecule level.
Para-coumaric acid (p-CA) is a plant derived secondary metabolite belonging to the phenolic compounds. It is widely distributed in the plant kingdom and found mainly in fruits, vegetables, and cereals. Various in vivo and in vitro studies have revealed its scavenging and antioxidative properties in the reduction of oxidative stress and inflammatory reactions. This evidence-based review focuses on the protective role of p-CA including its therapeutic potential. p-CA and its conjugates possesses various bioactivities such as antioxidant, anti-inflammatory, anti-cancer, anti-diabetic, and anti-melanogenic properties. Due to its potent free radical scavenging activity, it can mitigate the ill effects of various diseases including arthritis, neurological disorders, and cardio-vascular diseases. Recent studies have revealed that p-CA can ameliorate the harmful effects associated with oxidative stress in the reproductive system, also by inhibiting enzymes linked with erectile function.
- Publikační typ
- časopisecké články MeSH
- přehledy MeSH
The heterogeneity of the glioma subtype glioblastoma multiforme (GBM) challenges effective neuropathological treatment. The reliance on in vitro studies and xenografted animal models to simulate human GBM has proven ineffective. Currently, a dearth of knowledge exists regarding the applicability of cell line biomolecules to the realm of GBM pathogenesis. Our study's objectives were to address this preclinical issue and assess prominin-1, ICAM-1, PARTICLE and GAS5 as potential GBM diagnostic targets. The methodologies included haemoxylin and eosin staining, immunofluorescence, in situ hybridization and quantitative PCR. The findings identified that morphology correlates with malignancy in GBM patient pathology. Immunofluorescence confocal microscopy revealed prominin-1 in pseudo-palisades adjacent to necrotic foci in both animal and human GBM. Evidence is presented for an ICAM-1 association with degenerating vasculature. Significantly elevated nuclear PARTICLE expression from in situ hybridization and quantitative PCR reflected its role as a tumor activator. GAS5 identified within necrotic GBM validated this potential prognostic biomolecule with extended survival. Here we present evidence for the stem cell marker prominin-1 and the chemotherapeutic target ICAM-1 in a glioma animal model and GBM pathology sections from patients that elicited alternative responses to adjuvant chemotherapy. This foremost study introduces the long non-coding RNA PARTICLE into the context of human GBM pathogenesis while substantiating the role of GAS5 as a tumor suppressor. The validation of GBM biomarkers from cellular models contributes to the advancement towards superior detection, therapeutic responders and the ultimate attainment of promising prognoses for this currently incurable brain cancer.
- Publikační typ
- časopisecké články MeSH
The finding that a vast majority of microbial species cannot be readily grown in a pure culture or has not yet been cultivated and their genetic and metabolic potentials remain unknown, caused a revolution in the microbiologists' view of microbial world. The methodology of studying microbes has experienced a significant transformation. Metagenomics, developed over the past decade, involves isolation of DNA covering genomes of a microbial community (metagenome) directly from environmental matrices, construction of the library of metagenome fragments and sequence-based or functional screening of metagenomic clones. This allows to elucidate genomes of uncultured microorganisms, to illuminate their genetic diversity, to understand their ecological significance and to provide novel useful enzymes and biomolecules, A brief view of recent advances in metagenomic strategies is provided and examples of novel enzymes and biomolecules of potential biotechnological significance are given. In spite of a large amount of information provided by metagenomics, only a limited number of genes and enzymes are currently used in biotechnological processes. The identification of novel biocatalysts and their implementation in viable production processes is a future challenge.
Springer lab manual
2nd ed. xvii, 748 s., obr.
- MeSH
- laboratoře MeSH
- molekulární biologie MeSH
- příručky lékařské MeSH
- Publikační typ
- příručky MeSH
- učebnice MeSH
- Konspekt
- Lékařské vědy. Lékařství
- NLK Obory
- biologie
- lékařství
Icosahedral heteroboranes and especially metallacarboranes, which have recently been shown to act as potent HIV-1 protease inhibitors, are a unique class of chemical compounds with unusual properties, one of which is the formation of dihydrogen bonds with biomolecules. In this study, we investigate the effect of various metal vertices and exo-substitutions on several series of heteroboranes, including 11-vertex carborane cages [nido-7,8-C2B9Hn]n-13(n= 11,12,13), closo-1-SB11H11, closo-1-NB11H12, metal bis(dicarbollides)[3,3'-M (1,2-C2B9H11)2]n(M/n=Fe/2-, Co/1-, Ni/0) and fluoro (F), amino (NH2) and hydroxo (OH) derivatives of the metal bis(dicarbollides). Besides the properties of isolated systems (geometries, electronic properties and hydration), we study their interactions with a tetrapeptide, which models their biomolecular partner. Calculations have confirmed that the extra hydrogen in [nido-7,8-C2B9H12]- forms a bridge, which fluctuates between two stationary states. Using RESP-derived charges, it was ascertained that the negative charge of heteroboranes is located mainly on boron-bound hydrogens. An increase of the negative total charge (from 0 to -1 or -2) of heteroboranes yields an increase in the stabilisation energies of heteroborane[dot dot dot]peptide complexes and also a substantial increase in the hydration free energies of heteroboranes. Compared to the substitutions of metal vertices, the exo-substitutions of metallacarboranes cause a larger increase in stabilisation energies and a smaller increase in desolvation penalties. These two terms, stabilisation energies and desolvation penalties, contribute in opposite directions to the total heteroborane-biomolecule binding energy and must both be taken into account when designing new HIV-1 protease inhibitors.
1 online zdroj
- MeSH
- biochemické jevy * MeSH
- Publikační typ
- periodika MeSH
- Konspekt
- Biochemie. Molekulární biologie. Biofyzika
- NLK Obory
- biochemie