steels
Dotaz
Zobrazit nápovědu
... Clinical Studies 32 -- 8.1 Acute Silicosis in a Cleaner of Steel Cast-Iron 32 -- 8.2 Lungs Damage in ... ... Cleaners of the Steel Cast-Iron Group 35 -- 8.3. ... ... Rapid Silicosis from the Steel Cast Plant in Radiographs 39 -- 8.4. ... ... Elimination of Silicia Dust of the Steel Cast Plant from the Lungs of -- Dusted Rats 53 -- 9.4. ... ... Aggressivity of Dust from the Steel Cast Plant and Influence of Polyvinyl pyridin-N-oxide in Experiment ...
Opuscula pneumologica
1. vyd. 103 s., [32] s. obr. příl.
- Konspekt
- Patologie. Klinická medicína
- NLK Obory
- pracovní lékařství
- pneumologie a ftizeologie
- NLK Publikační typ
- studie
BIOLOGICAL ASPECTS OF STEEL AND TITANIUM AS IMPLANT MATERIAL IN ORTHOPEDIC TRAUMA SURGERY The following case from the ICUC database, where a titanium plate was implanted into a flourishing infection, represents the clinical experience leading to preferring titanium over steel. (Fig. 1) (6). Current opinions regarding biological aspects of implant function. The "street" opinions regarding the biological aspects of the use of steel versus titanium as a surgical trauma implant material differ widely. Statements of opinion leaders range from "I do not see any difference in the biological behavior between steel and titanium in clinical application" to "I successfully use titanium implants in infected areas in a situation where steel would act as foreign body "sustaining" infection." Furthermore, some comments imply that clinical proof for the superiority of titanium in human application is lacking. The following tries to clarify the issues addressing the different aspects more through a practical clinical approach than a purely scientific one, this includes simplifications. Today's overall biocompatibility of implant materials is acceptable but: As the vast majority of secondary surgeries are elective procedures this allows the selection of implant materials with optimal infection resistance. The different biological reactions of stainless steel and titanium are important for this segment of clinical pathologies. Biological tole - rance (18) depends on the toxicity and on the amount of soluble implant material released. Release, diffusion and washout through blood circulation determine the local concentration of the corrosion products. Alloying components of steel, especially nickel and chromium, are less than optimal in respect to tissue tolerance and allergenicity. Titanium as a pure metal provides excellent biological tolerance (3, 4, 16). Better strength was obtained by titanium alloys like TiAl6V4. The latter found limited application as surgical implants. It contains Vanadium (9). Today's high strength titanium alloys contain well tolerated alloying components1 like Zr, Nb, Mo and Ta (ISO 5832-14) (7, 15). The corrosion rate of surgical implants is kept low by the passive layer formed when immerged in body fluids (13, 14). The passive layer may be locally destroyed, for instance, by mechanical fretting or by local corrosion conditions like in pitting; it is renewed by an electrochemical corrosion process which releases alloying components like Ni and Cr (Fig. 2) (10). The amount of soluble component may vary markedly depending on the local electrochemical conditions (see below).
Recently, porous metallic materials have been extensively studied as candidates for use in the fabrication of scaffolds and augmentations to repair trabecular bone defects, e.g. in surroundings of joint replacements. Fabricating these complex structures by using common approaches (e.g., casting and machining) is very challenging. Therefore, rapid prototyping techniques, such as selective laser melting (SLM), have been investigated for these applications. In this study, we characterized a highly porous (87 vol.%) 316L stainless steel scaffold prepared by SLM. 316L steel was chosen because it presents a biomaterial still widely used for fabrication of joint replacements and, from the practical point of view, use of the same material for fabrication of an augmentation and a joint replacement is beneficial for corrosion prevention. The results are compared to the reported properties of two representative nonporous 316L stainless steels prepared either by SLM or casting and subsequent hot forging. The microstructural and mechanical properties and the surface chemical composition and interaction with the cells were investigated. The studied material exhibited mechanical properties that were similar to those of trabecular bone (compressive modulus of elasticity ~0.15GPa, compressive yield strength ~3MPa) and cytocompatibility after one day that was similar to that of wrought 316L stainless steel, which is a commonly used biomaterial. Based on the obtained results, SLM is a suitable method for the fabrication of porous 316L stainless steel scaffolds with highly porous structures.
- MeSH
- fotoelektronová spektroskopie MeSH
- lasery * MeSH
- lidé MeSH
- modul pružnosti účinky léků MeSH
- nádorové buněčné linie MeSH
- nerezavějící ocel farmakologie MeSH
- pevnost v tahu účinky léků MeSH
- poréznost MeSH
- povrchové vlastnosti MeSH
- testování materiálů metody MeSH
- tvar buňky MeSH
- železo farmakologie MeSH
- Check Tag
- lidé MeSH
- Publikační typ
- časopisecké články MeSH
Bacillus toyonensis (a Gram-positive bacterium) and Pseudomonas aeruginosa (a Gram-negative bacterium) isolated from the different surfaces of a dairy plant in our previous study were selected as the test bacteria for the present study. These two test bacteria were investigated in terms of their attachment on the stainless steel test surfaces in a model dairy batch system. After incubation at 5 °C and 20 °C for 6 h, 12 h, and 24 h, stainless steel plates were examined using cultural counts, profilometer, scanning electron microscopy (SEM), and fluorescent microscopy. Also, the test plates were subjected to a cleaning/disinfection procedure used in the dairy plant. Tests were employed before and after the cleaning/disinfection procedures. Cell wall characteristics and holding temperature were found to be significant for the attachment of the test bacteria to stainless steel test surfaces. In the study, the effect of the holding temperature varied depending on the type and characteristics of the bacteria. The adhesion ability of P. aeruginosa was higher than that of B. toyonensis. Increases in the holding temperature may increase the adhesion ability of the bacteria. Milk growth medium was found to be more successful in preventing the attachment ability of P. aeruginosa compared to B. toyonensis. This indicates that the chemical characteristic of the contact material may affect adhesion. The adhered bacterial cells were entirely removed by means of the cleaning/disinfection treatment. Therefore, the adhesion of bacterial cells could be explained as "initial phase of biofilm formation." It can be concluded that the microorganism cell adhesion on the surface is followed by biofilm formation, and this situation lasts for many years. These results reveal the importance of controlling biofilm formation in dairy plants from the beginning.
- MeSH
- Bacillus MeSH
- bakteriální adheze MeSH
- biofilmy MeSH
- nerezavějící ocel * MeSH
- Pseudomonas aeruginosa * MeSH
- Publikační typ
- časopisecké články MeSH
- MeSH
- chrom klasifikace škodlivé účinky MeSH
- karcinogeny chemie MeSH
- lidé MeSH
- nerezavějící ocel MeSH
- svařování MeSH
- Check Tag
- lidé MeSH
Biocompatibility is one of the key issues for implants, especially in the case of stainless steel with medium to low biocompatibility, which may lead to a lack of osseointegration and consequently to implant failure or rejection. To precisely control preferential cell growth sites and, consequently, the biocompatibility of prosthetic devices, two types of surfaces were analyzed, containing periodic nanogrooves laser induced periodic surface structure (LIPSS) and square-shaped micropillars. For the fast and efficient production of these surfaces, the unique combination of high energy ultrashort pulsed laser system with multi-beam and beamshaping technology was applied, resulting in increased productivity by 526% for micropillars and 14 570% for LIPSS compared to single beam methods.In vitroanalysis revealed that micro and nanostructured surfaces provide a better environment for cell attachment and proliferation compared to untreated ones, showing an increase of up to 496% in the number of cells compared to the reference. Moreover, the combination of LIPSS and micropillars resulted in a precise cell orientation along the periodic microgroove pattern. The combination of these results demonstrates the possibility of mass production of functionalized implants with control over cell organization and growth. Thus, reducing the risk of implant failure due to low biocompatibility.
High resistance to environmental factors as well as the ability to form biofilms allow Listeria monocytogenes to persist for a long time in difficult-to-reach places in food-producing plants. L. monocytogenes enters final products from contaminated surfaces in different areas of plants and poses a health risk to consumer. Modified surfaces are already used in the food industry to prevent cross-contamination. In this study, stainless-steel surfaces were coated with nanoscale silicon dioxide and the effects on attachment, bacterial growth and detachment of L. monocytogenes were evaluated. Attachment was considered for three different ways of application to simulate different scenarios of contamination. Bacterial growth of L. monocytogenes on the surface was recorded over a period of up to 8 h. Detachment was tested after cleaning inoculated stainless-steel surfaces with heated distilled water or detergent. Coating stainless-steel surfaces with nanoscale silica tends to reduce adherence and increased detachment and does not influence the bacterial growth of L. monocytogenes. Further modifications of the coating are necessary for a targeted use in the reduction of L. monocytogenes in food-processing plants.
Biofilm formation (BF) and production in the food processing industry (FPI) is a continual threat to food safety and quality. Various bacterial pathogens possess the ability to adhere and produce biofilms on stainless steel (SS) in the FPI due to flagella, curli, pili, fimbrial adhesins, extra polymeric substances, and surface proteins. The facilitating environmental conditions (temperature, pressure, variations in climatic conditions), SS properties (surface energy, hydrophobicity, surface roughness, topography), type of raw food materials, pre-processing, and processing conditions play a significant role in the enhancement of bacterial adhesion and favorable condition for BF. Furthermore, biofilm formers can tolerate different sanitizers and cleaning agents due to the constituents, concentration, contact time, bacterial cluster distribution, and composition of bacteria within the biofilm. Also, bacterial biofilms' ability to produce various endotoxins and exotoxins when consumed cause food infections and intoxications with serious health implications. It is thus crucial to understand BF's repercussions and develop effective interventions against these phenomena that make persistent pathogens difficult to remove in the food processing environment.
- MeSH
- bakteriální adheze MeSH
- bakteriální infekce prevence a kontrola přenos MeSH
- biofilmy * růst a vývoj MeSH
- dezinfekce MeSH
- fyziologie bakterií * MeSH
- lidé MeSH
- manipulace s potravinami * přístrojové vybavení normy MeSH
- nerezavějící ocel * MeSH
- potravinářská mikrobiologie * MeSH
- Check Tag
- lidé MeSH
- Publikační typ
- časopisecké články MeSH
- přehledy MeSH
When choosing between metal implants of different materials the surgeon mainly needs to balance the pros and cons of steel and titanium. Economic constraints often do not permit both to be kept in stock and it is necessary to decide beforehand which to choose. The arguments for the use of the "preferred metal" vary. The present paper elucidates the practical aspects based on the complex scientific background that has identified the differences between the two metals in their mechanical, electrochemical, biological and application behavior. The data presented here are intended to help the surgeon when he is confronted with different and often complex clinical situations and problems. The following is an overview of different aspects to help with selection of the proper material for the clinical application. The first part concerns mechanical aspects the second part the biological aspects. Both aspects are discussed with the practical application in mind. Nonmetallic implant materials have seen an increasing interest in the recent past. Plastic materials needed improvement to achieve good strength and avoid creep with loss of e.g. compression and minimizing leakage of chemicals.
- MeSH
- biomechanika MeSH
- lidé MeSH
- ocel MeSH
- ortopedické výkony přístrojové vybavení MeSH
- protézy a implantáty * MeSH
- testování materiálů MeSH
- titan MeSH
- Check Tag
- lidé MeSH
- Publikační typ
- časopisecké články MeSH