In search of new cytotoxic derivatives based on the lupane scaffold, methyl betulonate and methyl 20,29-dihydrobetulonate were conjugated with Reformatsky reagents to provide homolupanes extended at the C3-carbon atom. Further transformations of the functional groups afforded a series of derivatives with 2-hydroxyethyl and allyl alcohol moieties. Their varying antiproliferative activity in vitro was then investigated in four cancer cell lines and in normal human BJ fibroblasts. In cervical carcinoma HeLa cells, derivatives 5, 6 and 17 were the most promising with lower micromolar IC50s and no toxicity to fibroblasts, thus showing a high therapeutic index. In addition, induction of apoptosis was found in HeLa cells after 24 h treatment with compounds 5, 6, 13 and 29. This newly synthesized series is more interesting than the published lupane and homolupane triterpenes and saponins, due to their nontoxicity towards healthy human cells and stronger cytotoxicity to various cancer cell lines. This approach increases their potential as anticancer agents.
- MeSH
- antitumorózní látky * farmakologie MeSH
- HeLa buňky MeSH
- kyselina betulinová MeSH
- léky antitumorózní - screeningové testy MeSH
- lidé MeSH
- nádorové buněčné linie MeSH
- triterpeny * farmakologie MeSH
- vztahy mezi strukturou a aktivitou MeSH
- Check Tag
- lidé MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
Natural cardiac-active principles built upon the 14,16β-dihydroxy-5β,14β-androstane core and bearing a heterocyclic substituent at 17β, in particular, a cardenolide - oleandrin and a bufadienolide - bufotalin, are receiving a great deal of attention as potential anticancer drugs. The densely substituted and sterically shielded ring D is the particular structural feature of these compounds. The first synthesis of oleandrigenin from easily available steroid starting material is reported here. Furthermore, selected 17β-(4-butenolidyl)- and 17β-(3-furyl)-14,16β-dihydroxy-androstane derivatives were en route synthesized and examined for their Na+/K+-ATP-ase inhibitory properties as well as cytotoxic activities in normal and cancer cell lines. It was found that the furyl-analogue of oleandrigenin/bufatalin (7) and some related 17-(3-furyl)- derivatives (19, 21) show remarkably high Na+/K+-ATP-ase inhibitory activity as well as significant cytotoxicity in vitro. In addition, oleandrigenin 2 compared to derivatives 21 and 25 induced strong apoptosis in human cervical carcinoma HeLa cells after 24 h of treatment.
- MeSH
- antitumorózní látky chemická syntéza chemie farmakologie MeSH
- apoptóza účinky léků MeSH
- buněčné linie MeSH
- buněčný cyklus účinky léků MeSH
- inhibitory enzymů chemická syntéza chemie farmakologie MeSH
- kardenolidy chemická syntéza chemie farmakologie MeSH
- léky antitumorózní - screeningové testy MeSH
- lidé MeSH
- molekulární konformace MeSH
- proliferace buněk účinky léků MeSH
- sodíko-draslíková ATPasa antagonisté a inhibitory metabolismus MeSH
- stereoizomerie MeSH
- vztah mezi dávkou a účinkem léčiva MeSH
- vztahy mezi strukturou a aktivitou MeSH
- Check Tag
- lidé MeSH
- Publikační typ
- časopisecké články MeSH
Cisplatin is the most widely used chemotherapeutic drug for the treatment of various types of cancer; however, its administration brings also numerous side effects. It was demonstrated that cisplatin can inhibit the Na+/K+-ATPase (NKA), which can explain a large part of the adverse effects. In this study, we have identified five cysteinyl residues (C452, C456, C457, C577, and C656) as the cisplatin binding sites on the cytoplasmic loop connecting transmembrane helices 4 and 5 (C45), using site-directed mutagenesis and mass spectrometry experiments. The identified residues are known to be susceptible to glutathionylation indicating their involvement in a common regulatory mechanism.
- MeSH
- antitumorózní látky chemie farmakologie MeSH
- cisplatina chemie farmakologie MeSH
- cystein antagonisté a inhibitory metabolismus MeSH
- cytoplazma účinky léků metabolismus MeSH
- hmotnostní spektrometrie MeSH
- mutageneze cílená MeSH
- myši MeSH
- simulace molekulární dynamiky MeSH
- sodíko-draslíková ATPasa antagonisté a inhibitory genetika metabolismus MeSH
- vazebná místa účinky léků MeSH
- zvířata MeSH
- Check Tag
- myši MeSH
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
We examined the inhibitory effects of three flavonolignans and their dehydro- derivatives, taxifolin and quercetin on the activity of the Na(+)/K(+)-ATPase (NKA). The flavonolignans silychristin, dehydrosilychristin and dehydrosilydianin inhibited NKA with IC50 of 110 ± 40 μM, 38 ± 8 μM, and 36 ± 14 μM, respectively. Using the methods of molecular modeling, we identified several possible binding sites for these species on NKA and proposed the possible mechanisms of inhibition. The binding to the extracellular- or cytoplasmic C-terminal sites can block the transport of cations through the plasma membrane, while the binding on the interface of cytoplasmic domains can inhibit the enzyme allosterically. Fluorescence spectroscopy experiments confirmed the interaction of these three species with the large cytoplasmic segment connecting transmembrane helices 4 and 5 (C45). The flavonolignans are distinct from the cardiac glycosides that are currently used in NKA treatment. Because their binding sites are different, the mechanism of inhibition is different as well as the range of active concentrations, one can expect that these new NKA inhibitors would exhibit also a different biomedical actions than cardiac glycosides.
- Publikační typ
- časopisecké články MeSH