Piscine cytochrome P450 (CYP) enzymes play an important role in the metabolism of xenobiotics. Xenobiotics often act as inducers of CYP1A1 and CYP3A expression and activity in fish. We compared constitutive mRNA expression of CYP1A1, CYP3A27, and CYP3A45 and catalytic activity of CYP1A (7-ethoxyresorufin-O-deethylation, EROD) and CYP3A-like (benzyloxy-4-trifluoromethylcoumarin-O-debenzyloxylation, BFCOD) enzymes in the following six rainbow trout tissues: liver, gill, heart, brain, intestine, and gonad. mRNA expression and activity were present in all investigated tissues. The CYP1A1 mRNA expression was higher in the liver, gill, heart, and brain compared to gonad and intestine. The intestine was the main site of CYP3A27 and CYP3A45 expression. The highest EROD and BFCOD activity was observed in liver tissue followed in descending order by heart, brain, gill, intestine, and gonad. Such differences might be related to the role of CYP physiological functions in the specific tissue. Rainbow trout exposure to 50 mg/kg of β-naphthoflavone for 48 h resulted in a 7.5- and 5.9-fold increase in liver EROD and BFCOD activity, respectively. In vitro EROD activity inhibition with ellipticine showed tissue-specific inhibition, while ketoconazole decreased BFCOD activity by 50-98 % in all tissues. Further studies are needed to identify all CYP isoforms that are responsible for these activities and modes of regulation.
- MeSH
- cytochrom P-450 CYP1A1 genetika metabolismus MeSH
- cytochrom P-450 CYP3A genetika metabolismus MeSH
- játra enzymologie MeSH
- messenger RNA genetika metabolismus MeSH
- mozek enzymologie MeSH
- myokard enzymologie MeSH
- Oncorhynchus mykiss metabolismus MeSH
- pohlavní dimorfismus MeSH
- regulace genové exprese enzymů fyziologie MeSH
- střeva enzymologie MeSH
- žábry enzymologie MeSH
- zvířata MeSH
- Check Tag
- mužské pohlaví MeSH
- ženské pohlaví MeSH
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
With increasing demand for aquaculture products, water reuse is likely to increase for aquaculture operations around the world. Herein, wastewater stabilization ponds (WSP) represents low cost and sustainable treatment technologies to reduce nutrients and various contaminants of emerging concern from effluent. In the present study, we examined bioaccumulation of selected pharmaceuticals from several therapeutic classes by two important fish species in aquaculture with different feeding preferences (Cyprinus carpio and Sander lucioperca) and their common prey to test whether species specific accumulation occurs. Forty and nineteen from 66 selected pharmaceuticals and their metabolites were positively found in water and sediment samples, respectively from the representative WSP. After a six-month study, which corresponds to aquaculture operations, fourteen pharmaceuticals and their metabolites were detected (at a frequency of higher than 50% of samples) in at least one fish tissue collected from the WSP. We observed striking differences for species and organ specific BAFs among study compounds. Though muscle tissues consistently accumulated lower levels of the target analytes, several substances were elevated in brain, liver and kidney tissues (e.g., sertraline) of both species. Low residual concentrations of these target analytes in aquaculture products (fish fillets) suggest WSPs are promising to support the water-food nexus in aquaculture.
- MeSH
- bioakumulace MeSH
- chemické látky znečišťující vodu * MeSH
- kapři * MeSH
- léčivé přípravky * MeSH
- odpadní voda MeSH
- rybníky MeSH
- voda MeSH
- vodní hospodářství MeSH
- zvířata MeSH
- Check Tag
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
Although banned, dyes, such as Victoria pure blue BO (VPBO), are illicitly used in aquaculture to treat or prevent infections due to their therapeutic activities. The present study examined the formation of phase I and phase II metabolites derived from VPBO using trout liver microsomes and S9 proteins. The well-known malachite green (MG) dye was also studied as a positive control and to compare its metabolism with that of VPBO. First, we optimised the incubation conditions for the detection of VPBO and MG metabolites by studying the formation of cytochrome P450 (CYP) substrates. Using the determined conditions (2 h at 20 °C), we incubated VPBO with trout microsomal and S9 fractions induced with β-naphtoflavone, and analysed the supernatant in a LC-LTQ-Orbitrap-HRMS system. The in vitro assays led to the detection of 16 VPBO metabolites from Phase I reactions, arising in particular from reactions with CYP1A. No metabolites were detected from Phase II reactions. The main metabolite detected, deethyl-VPBO, was CID-fragmented to determine its chemical structure, and thus recommend a potential biomarker for the control of VPBO in farmed fish foodstuffs.
- MeSH
- barvicí látky metabolismus MeSH
- jaterní mikrozomy metabolismus MeSH
- kontaminace potravin analýza MeSH
- kvartérní amoniové sloučeniny metabolismus MeSH
- metabolomika MeSH
- potrava z moře (živočišná) * MeSH
- ryby metabolismus MeSH
- systém (enzymů) cytochromů P-450 metabolismus MeSH
- vodní hospodářství MeSH
- zvířata MeSH
- Check Tag
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
The hepatic cytochrome p450 enzymes 1 A, 2A19 and 2E1 is very important for the elimination of skatole from the body of pigs. Impaired skatole metabolism, results in skatole accumulation, which give rise to off flavor of the meat. Several metabolites of skatole has been identified, however the role of these metabolites in the inhibition of the skatole metabolizing enzymes are not documented. Using microsomes from pigs and fish, we determined the ability of several skatole metabolites to inhibit CYP1 A, CYP2A19 and CYP2E1 dependent activity. Our results show that 2-aminoacetophenone is an inhibitor of porcine CYP2A19 and CYP2E1 activity, but not the piscine orthologues. In conclusion, there is species specific differences in the inhibition of CYP1 A and CYP2A19 dependent metabolism of probe substrates. This is relevant to the evaluation of different model systems and to the reduction of off flavor of meat.
- MeSH
- acetofenony toxicita MeSH
- červené maso analýza MeSH
- cytochrom P-450 CYP1A1 antagonisté a inhibitory metabolismus MeSH
- cytochrom P-450 CYP2E1 metabolismus MeSH
- druhová specificita MeSH
- inhibitory cytochromu P450 CYP2E1 toxicita MeSH
- jaterní mikrozomy účinky léků metabolismus MeSH
- játra účinky léků metabolismus MeSH
- kumariny toxicita MeSH
- nitrofenoly toxicita MeSH
- oxaziny toxicita MeSH
- potrava z moře (živočišná) analýza MeSH
- prasata MeSH
- ryby MeSH
- skatol toxicita MeSH
- systém (enzymů) cytochromů P-450 metabolismus MeSH
- zvířata MeSH
- Check Tag
- mužské pohlaví MeSH
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
This study characterized changes in biomarker responses in common carp (Cyprinus carpio) upon exposure to effluent water discharged from a sewage treatment plant (STP) under real conditions. Fish were exposed to contamination in Cezarka pond, which receives all of its water input from the STP in the town of Vodnany, Czech Republic. Five sampling events were performed at day 0, 30, 90, 180, and 360 starting in April 2015. In total, 62 pharmaceutical and personal care products (PPCPs) were detected in the polar organic chemical integrative sampler. Compared to a control pond, the total concentration of PPCPs was 45, 16, 7, and 7 times higher in Cezarka pond at day 30, 90, 180, and 360, respectively. The result of oxidative stress and antioxidant enzyme biomarkers indicated alterations in the liver and intestine tissues of fish from Cezarka pond at day 30 and 360, respectively. High plasma vitellogenin levels were observed in both exposed females (180 and 360 days) and males (360 days) compared with their respective controls. However, only exposed female fish had higher vitellogenin mRNA expression than the control fish in these periods. Exposed female fish showed irregular structure of the ovary with scattered oocytes, which further developed to a vitellogenic stage at day 360. Low white blood cell levels were indicated in all exposed fish. Despite numerous alterations in exposed fish, favorable ecological conditions including high availability of food resulted in a better overall condition of the exposed fish after 1 year of exposure compared to the controls.
- MeSH
- chemické látky znečišťující vodu * MeSH
- kapři * MeSH
- odpadní vody MeSH
- vitelogeniny MeSH
- zvířata MeSH
- Check Tag
- mužské pohlaví MeSH
- ženské pohlaví MeSH
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
Erythromycin (ERY) is one of the most common antibiotics used in human and veterinary practices, leading to ubiquitous environmental distribution and possible toxicity to non-target organisms. The purpose of this study was to determine sub-lethal effects of ERY towards the marine fish Sparus aurata (gilthead seabream). S. aurata were acutely (0.3-323 μg/L, 96 h) and chronically (0.7-8.8 μg/L, 28 d) exposed to ERY. Detoxification [7-ethoxyresorufin O-deethylase (EROD), glutathione S-transferases (GSTs), uridine-diphosphate-glucuronosyltransferase (UGT)], oxidative stress [catalase (CAT), glutathione peroxidase (GPx), glutathione reductase (GRed)], lipid peroxidation [thiobarbituric acid reactive substances - (TBARS)], genotoxicity [genetic damage index (GDI) and erythrocytic nuclear abnormalities (ENAs)], neurotransmission [acetylcholinesterase (AChE)] and energy metabolism [lactate dehydrogenase (LDH)] biomarkers were evaluated. Results showed that ERY did not promote significant effects in detoxification biomarkers, but induced slight pro-oxidative effects (decrease of GPx activity in the liver after acute exposure and an increase in gills after chronic exposure; and an increase of hepatic GRed activity following chronic exposure). There was a significant decrease in TBARS after chronic exposure, which contradicts a full scenario of oxidative stress. In terms of genotoxicity, both ERY exposures caused only a significant increase of GDI. Neurotransmission and energy metabolism were not also affected by ERY. Although few toxic effects of ERY have been previously documented (involving different metabolic pathways, as tested in this work), these were mainly observed for freshwater species. These findings suggest low vulnerability of S. aurata to ERY at levels close to the ones found in the wild.
- MeSH
- antibakteriální látky toxicita MeSH
- biologické markery metabolismus MeSH
- lidé MeSH
- mořan zlatý fyziologie MeSH
- oxidační stres účinky léků MeSH
- peroxidace lipidů účinky léků MeSH
- poškození DNA účinky léků MeSH
- testy toxicity metody MeSH
- zvířata MeSH
- Check Tag
- lidé MeSH
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
Chemical exposure during the early life stages of development may have long lasting effects on organisms that are rarely studied. The present work intended to evaluate the effect of embryonic exposure to the pesticide carbaryl on adult fish behavior. Zebrafish (Danio rerio) embryos were exposed, for 4 days, to sublethal concentrations of carbaryl (0.01, 0.1 and 1.0 mg/L) plus a control and then kept in standard cultivation conditions until adulthood. A battery of behavioral tests was then performed to assess anxiety-like behavior (locomotor activity, thigmotaxis and novel tank diving test), social behavior, and feeding. Developmental exposure of zebrafish to sublethal concentrations of carbaryl produced important behavioral alterations in the adulthood. Main effects included decreased locomotion/hypoactivity (increase in slow movements and decrease of medium and rapid movements), especially in the light periods. Moreover, spatial pattern also changed: while during dark periods control fish increased activity in the outer zone of the tank, this was not observed in exposed fish. Overall, this demonstrated the importance of life stage exposure, clearly demonstrating long lasting effects of a (chemical) stress event at embryonic stages. This data supports the need of considering this scenario in environmental risk evaluations. Further work should focus on the mechanistic effects of developmental disruption responsible for the effects observed.
- MeSH
- chování zvířat účinky léků MeSH
- dánio pruhované embryologie MeSH
- embryo nesavčí účinky léků MeSH
- insekticidy toxicita MeSH
- karbaryl toxicita MeSH
- lokomoce účinky léků MeSH
- zvířata MeSH
- Check Tag
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
A robust and widely applicable method for sampling of aquatic microbial biofilm and further sample processing is presented. The method is based on next-generation sequencing of V4-V5 variable regions of 16S rRNA gene and further statistical analysis of sequencing data, which could be useful not only to investigate taxonomic composition of biofilm bacterial consortia but also to assess aquatic ecosystem health. Five artificial materials commonly used for biofilm growth (glass, stainless steel, aluminum, polypropylene, polyethylene) were tested to determine the one giving most robust and reproducible results. The effect of used sampler material on total microbial composition was not statistically significant; however, the non-plastic materials (glass, metal) gave more stable outputs without irregularities among sample parallels. The bias of the method is assessed with respect to the employment of a non-quantitative step (PCR amplification) to obtain quantitative results (relative abundance of identified taxa). This aspect is often overlooked in ecological and medical studies. We document that sequencing of a mixture of three merged primary PCR reactions for each sample and further evaluation of median values from three technical replicates for each sample enables to overcome this bias and gives robust and repeatable results well distinguishing among sampling localities and seasons.
- MeSH
- Bacteria klasifikace genetika MeSH
- biofilmy * růst a vývoj MeSH
- mikrobiologie vody * MeSH
- mikrobiota genetika MeSH
- monitorování životního prostředí metody MeSH
- odběr biologického vzorku MeSH
- reprodukovatelnost výsledků MeSH
- RNA ribozomální 16S genetika MeSH
- sekvenční analýza DNA * MeSH
- vysoce účinné nukleotidové sekvenování * MeSH
- Publikační typ
- časopisecké články MeSH
- srovnávací studie MeSH
Oxytetracycline (OTC) is a broad-spectrum antibiotic widely used in livestock production. Like many other pharmaceuticals, OTC is not completely metabolized by the organism and thus, increasing amounts of the compound are being detected in the aquatic environment. The assessment of the environmental risk of pharmaceuticals is hindered by their very low concentrations and specific modes of action and thus relevant exposure scenarios and sensitive endpoints are needed. Thus, this work aimed to study the long-term effect of OTC exposure in zebrafish (at behavior and biochemical levels) and associated bacterial communities (fish gut and water bacterial communities). Results revealed that at behavioral level, boldness increase (manifested by increased exploratory behavior of a new environment) was observed in fish exposed to low OTC concentrations. Moreover, changes in fish swimming pattern were observed in light periods (increased stress response: hyperactivity and freezing) probably due to photo-sensibility conferred by OTC exposure. Effects at biochemical level suggest that long-term exposure to OTC interfere with cellular energy allocation mainly by reducing lipids levels and increasing energy consumption. Moreover, evidences of oxidative damage were also observed (reduced levels of TG, GST and CAT). The analysis of water and gut microbiome revealed changes in the structure and diversity of bacterial communities potentially leading to changes in communities' biological function. Some of the effects were observed at the lowest concentration tested, 0.1 μg/L which is a concentration already detected in the environment and thus clearly demonstrating the need of a serious ecotoxicological assessment of OTC effects on non-target organisms.
- MeSH
- antibakteriální látky farmakologie toxicita MeSH
- Bacteria metabolismus MeSH
- chemické látky znečišťující vodu farmakologie toxicita MeSH
- dánio pruhované fyziologie MeSH
- energetický metabolismus účinky léků MeSH
- metabolismus lipidů účinky léků MeSH
- oxidační stres účinky léků MeSH
- oxytetracyklin farmakologie toxicita MeSH
- plavání MeSH
- střevní mikroflóra * MeSH
- zvířata MeSH
- Check Tag
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
Phytochemicals are widely present in fruits, vegetables and other plants and have great health benefits owing to their antioxidant properties. They are naturally found in the aquatic environment as well as discharged from sewage treatment plants after their large consumption. Little is known about their impact on fish; particularly in light of their interactions with pharmaceuticals. Therefore, this study was designed to determine the effects of diosmin, naringenin, quercetin and idole-3-carbinol on CYP1A-dependent 7-ethoxyresorufin-O-deethylase (EROD) activity on rainbow trout hepatic microsomes in the presence of two pharmaceuticals: clotrimazole and dexamethasone. The interactions between the phytochemicals and pharmaceuticals used in this study were determined using a combination index. Hepatic microsomes were exposed to two concentrations (1-or 50 μM) of phytochemicals and pharmaceuticals separately and in combinations. Singly, clotrimazole inhibited EROD activity 40% and 90% of control, while dexamethasone did not. Naringenin and diosmin inhibited EROD activity alone up to 90% and 55% respectively, but activities were further inhibited in the presence of either pharmaceutical. The preliminary study of combinations of clotrimazole with phytochemicals primarily showed synergistic effects. While EROD activity was not inhibited in the presence of quercetin or indole-3-carbinol, significant and synergistic inhibition was detected when either of these was combined with clotrimazole or dexamethasone.
- MeSH
- cytochrom P-450 CYP1A1 chemie metabolismus MeSH
- dexamethason chemie farmakologie MeSH
- diosmin chemie farmakologie MeSH
- flavanony chemie farmakologie MeSH
- indoly chemie farmakologie MeSH
- inhibitory enzymů chemie farmakologie MeSH
- jaterní mikrozomy účinky léků enzymologie MeSH
- játra účinky léků enzymologie MeSH
- kinetika MeSH
- klotrimazol chemie farmakologie MeSH
- Oncorhynchus mykiss metabolismus MeSH
- quercetin chemie farmakologie MeSH
- rybí proteiny chemie metabolismus MeSH
- zvířata MeSH
- Check Tag
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH