Background: Hypertriglyceridemia has serious health risks such as cardiovascular disease, type 2 diabetes mellitus, nephropathy, and others. Fenofibrate is an effective hypolipidemic drug, but its benefits for ameliorating disorders associated with hypertriglyceridemia failed to be proven in clinical trials. Methods: To search for possible causes of this situation and possibilities of their favorable influence, we tested the effect of FF monotherapy and the combination of fenofibrate with silymarin on metabolic disorders in a unique model of hereditary hypertriglyceridemic rats (HHTg). Results: Fenofibrate treatment (100 mg/kg BW/day for four weeks) significantly decreased serum levels of triglyceride, (-77%) and free fatty acids (-29%), the hepatic accumulation of triglycerides, and the expression of genes encoding transcription factors involved in lipid metabolism (Srebf2, Nr1h4. Rxrα, and Slco1a1). In contrast, the hypertriglyceridemia-induced ectopic storage of lipids in muscles, the heart, and kidneys reduced glucose utilization in muscles and was not affected. In addition, fenofibrate reduced the activity of the antioxidant system, including Nrf2 expression (-35%) and increased lipoperoxidation in the liver and, to a lesser extent, in the kidneys and heart. Adding silymarin (micronized form, 600 mg/kg BW/day) to fenofibrate therapy increased the synthesis of glycogen in muscles, (+36%) and reduced hyperinsulinemia (-34%). In the liver, it increased the activity of the antioxidant system, including PON-1 activity and Nrf2 expression, and reduced the formation of lipoperoxides. The beneficial effect of combination therapy on the parameters of oxidative stress and lipoperoxidation was also observed, to a lesser extent, in the heart and kidneys. Conclusions: Our results suggest the potential beneficial use of the combination of FF with SLM in the treatment of hypertriglyceridemia-induced metabolic disorders.
- Publikační typ
- časopisecké články MeSH
Recently, we have identified a recessive mutation, an abnormal coat appearance in the BXH6 strain, a member of the HXB/BXH set of recombinant inbred (RI) strains. The RI strains were derived from the spontaneously hypertensive rat (SHR) and Brown Norway rat (BN-Lx) progenitors. Whole genome sequencing of the mutant rats identified the 195875980 G/A mutation in the tuftelin 1 (Tuft1) gene on chromosome 2, which resulted in a premature stop codon. Compared with wild-type BXH6 rats, BXH6-Tuft1 mutant rats exhibited lower body weight due to reduced visceral fat and ectopic fat accumulation in the liver and heart. Reduced adiposity was associated with decreased serum glucose and insulin and increased insulin-stimulated glycogenesis in skeletal muscle. In addition, mutant rats had lower serum monocyte chemoattractant protein-1 and leptin levels, indicative of reduced inflammation. Analysis of the liver proteome identified differentially expressed proteins from fatty acid metabolism and β-oxidation, peroxisomes, carbohydrate metabolism, inflammation, and proteasome pathways. These results provide evidence for the important role of the Tuft1 gene in the regulation of lipid and glucose metabolism and suggest underlying molecular mechanisms.NEW & NOTEWORTHY A new spontaneous mutation, abnormal hair appearance in the rat, has been identified as a nonfunctional tuftelin 1 (Tuft1) gene. The pleiotropic effects of this mutation regulate glucose and lipid metabolism. Analysis of the liver proteome revealed possible molecular mechanisms for the metabolic effects of the Tuft1 gene.
- MeSH
- glukosa * metabolismus MeSH
- inzulin metabolismus MeSH
- krysa rodu rattus MeSH
- metabolismus lipidů genetika MeSH
- nesmyslný kodon * genetika MeSH
- potkani inbrední BN MeSH
- potkani inbrední SHR MeSH
- proteom metabolismus MeSH
- zánět MeSH
- zvířata MeSH
- Check Tag
- krysa rodu rattus MeSH
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
BACKGROUND: Quercetin is a promising phytochemical in treating abnormalities associated with metabolic syndrome (MetS). This study aimed to explore the morphometric, metabolic, transcriptomic, and nutrigenetic responses to quercetin supplementation using two genetically distinct MetS models that only differ in the variant of the MetS-related Zbtb16 gene (Zinc Finger And BTB Domain Containing 16). RESULTS: Quercetin supplementation led to a significant reduction in the relative weight of retroperitoneal adipose tissue in both investigated strains. A decrease in visceral (epididymal) fat mass, accompanied by an increase in brown fat mass after quercetin treatment, was observed exclusively in the SHR strain. While the levels of serum triglycerides decreased within both strains, the free fatty acids levels decreased in SHR-Zbtb16-Q rats only. The total serum cholesterol levels were not affected by quercetin in either of the two tested strains. While there were no significant changes in brown adipose tissue transcriptome, quercetin supplementation led to a pronounced gene expression shift in white retroperitoneal adipose tissue, particularly in SHR-Zbtb16-Q. CONCLUSION: Quercetin administration ameliorates certain MetS-related features; however, the efficacy of the treatment exhibits subtle variations depending on the specific variant of the Zbtb16 gene.
- Publikační typ
- časopisecké články MeSH
Závěrečná zpráva o řešení grantu Agentury pro zdravotnický výzkum MZ ČR
nestr.
Diabetes mellitus ranks among main risk factors for cardiovascular disease (CVD). While in diabetes mellitus type 2 the mechanisms of atherosclerosis and CVD are well understood, the role of type 1 diabetes mellitus seems to be more complex. However, important risk factor for atherosclerosis development in diabetes type 1 could be insulin resistance as in diabetes type 2. In the proposed study we will analyze associations of traditional cardiovascular risk factors including markers of physical activity/fitness in women with diabetes type 1 (n=50) with preclinical atherosclerosis in men (n=230) and women (n=330) with both types of diabetes including analysis of modifying effect of type of diabetes, sex, reproductive status and polymorphism of gene for connexin 37. The gene for connexin 37 could play important role in distally located peripheral arteries mostly affected in diabetic patients. In additional experimental study in hypertriglyceridemic female rats (n=90) we will evaluate modifying role of ovariectomy on the effect of metformin treatment on markers of vascular damage and exp
Diabetes mellitus patří mezi hlavní rizikové faktory vzniku kardiovaskulárních onemocnění (KVO). Zatímco u diabetes mellitus 2. typu jsou mechanismy aterosklerózy a KVO dobře popsány, u diabetes mellitus 1. typu jsou tyto mechanismy složitější, jedním z důležitých faktorů může být inzulínová rezistence. Vznik cévních komplikací mohou modifikovat pohlaví, reprodukční věk u žen a genetické faktory. Na základě našich předchozích studií chceme analyzovat vztah tradičních kardiovaskulárních rizikových faktorů včetně fyzické zdatnosti u subpopulace žen s diabetes mellitus 1 (n=50) se známkami aterosklerózy stanovené ultrazvukem, u diabetických mužů (n=230) a žen (n=330) určit modifikaci těchto vztahů typem diabetu, pohlavím, reprodukčním stavem a polymorfismem genu pro connexin37. Dále bude v experimentální studii u hypertriglyceridemických samic potkanů (n=90) vyhodnocen vliv ovariektomie a léčby metforminem na markery poškození cévní stěny vyjádřené jako exprese genu pro connexin 37 a jako sonografické známky postižení poddajnosti aorty.
- Klíčová slova
- ateroskleróza, atherosclerosis, diabetes mellitus, diabetes mellitus, pohlaví, reprodukční věk, sex, gen connexin37, reproductive age, gene connexin37,
- NLK Publikační typ
- závěrečné zprávy o řešení grantu AZV MZ ČR
BACKGROUND AND AIMS: Recent studies suggest that empagliflozin reduces total and cardiovascular mortality in both diabetic and nondiabetic subjects. Although the exact mechanism is unclear, it is understood to positively affect myocardial energetics, including the metabolism of ketone bodies, lipids, and fatty acids. In this study, we compared empagliflozin effects on lipid metabolism in the heart and liver in a prediabetic rat model with severe dyslipidemia. MATERIALS AND METHODS: Wistar rats served as the control group, while hereditary hypertriglyceridemic (HHTg) rats were used as a nonobese, prediabetic model. Rats were treated with or without empagliflozin at a dose of 10 mg/kg body weight (BW) for 8 weeks. RESULTS: In HHTg rats, empagliflozin decreased body weight and adiposity, improved glucose tolerance, and decreased serum triacylglycerols (TAGs) (p < 0.001). Empagliflozin decreased the activity and gene expression of the lipogenic enzyme SCD-1 (p < 0.001) in the myocardium, which may have led to a decrease in the ectopic accumulation of TAGs and lipotoxic diacylglycerols and lysophosphatidylcholines (p < 0.001). Changes in the myocardial phosphatidylcholine/phosphatidylethanolamine ratio (p < 0.01) and in the fatty acid profile of myocardial phospholipids may have contributed to the antifibrotic effects of empagliflozin. The anti-inflammatory effects of empagliflozin were evidenced by an increased IL-10/TNFα ratio (p < 0.001), a marked decrease in arachidonic acid metabolites (20-HETE, p < 0.001), and an increase in PUFA metabolites (14,15-EETs, p < 0.001) in the myocardium. However, empagliflozin did not significantly affect either the concentration or utilization of ketone bodies. In the liver, empagliflozin decreased lipogenesis and the accumulation of TAGs and lipotoxic intermediates. Its effect on arachidonic acid metabolites and alterations in n-3 PUFA metabolism was less pronounced than in the myocardium. CONCLUSION: Our findings suggest that empagliflozin treatment in the heart and liver reduced the accumulation of neutral lipids and lipotoxic intermediates and altered the metabolism of n-3 PUFA. In the heart, empagliflozin altered arachidonic acid metabolism, which is likely associated with the anti-inflammatory and antifibrotic effects of the drug. We assume that these alterations in lipid metabolism contribute to the cardioprotective effects of empagliflozin in prediabetic states with severe dyslipidemia.
- Publikační typ
- časopisecké články MeSH
Menopause brings about profound physiological changes, including the acceleration of insulin resistance and other abnormalities, in which adipose tissue can play a significant role. This study analyzed the effect of ovariectomy and estradiol substitution on the metabolic parameters and transcriptomic profile of adipose tissue in prediabetic females of hereditary hypertriglyceridemic rats (HHTgs). The HHTgs underwent ovariectomy (OVX) or sham surgery (SHAM), and half of the OVX group received 17β-estradiol (OVX+E2) post-surgery. Ovariectomy resulted in weight gain, an impaired glucose tolerance, ectopic triglyceride (TG) deposition, and insulin resistance exemplified by impaired glycogenesis and lipogenesis. Estradiol alleviated some of the disorders associated with ovariectomy; in particular, it improved insulin sensitivity and reduced TG deposition. A transcriptomic analysis of perimetrial adipose tissue revealed 809 differentially expressed transcripts in the OVX vs. SHAM groups, mostly pertaining to the regulation of lipid and glucose metabolism, and oxidative stress. Estradiol substitution affected 1049 transcripts with overrepresentation in the signaling pathways of lipid metabolism. The principal component and hierarchical clustering analyses of transcriptome shifts corroborated the metabolic data, showing a closer resemblance between the OVX+E2 and SHAM groups compared to the OVX group. Changes in the adipose tissue transcriptome may contribute to metabolic abnormalities accompanying ovariectomy-induced menopause in HHTg females. Estradiol substitution may partially mitigate some of these disorders.
- Publikační typ
- časopisecké články MeSH
A combination of liver and heart dysfunction worsens the prognosis of human survival. The aim of this study was to investigate whether empagliflozin (a sodium-glucose transporter-2 inhibitor) has beneficial effects not only on cardiac and renal function but also on hepatic function. Adult (6-month-old) male spontaneously hypertensive rats (SHR) were fed a high-fat diet (60% fat) for four months to induce hepatic steatosis and mild heart failure. For the last two months, the rats were treated with empagliflozin (empa, 10 mg.kg-1.day-1 in the drinking water). Renal function and oral glucose tolerance test were analyzed in control (n=8), high-fat diet (SHR+HF, n=10), and empagliflozin-treated (SHR+HF+empa, n=9) SHR throughout the study. Metabolic parameters and echocardiography were evaluated at the end of the experiment. High-fat diet feeding increased body weight and visceral adiposity, liver triglyceride and cholesterol concentrations, and worsened glucose tolerance. Although the high-fat diet did not affect renal function, it significantly worsened cardiac function in a subset of SHR rats. Empagliflozin reduced body weight gain but not visceral fat deposition. It also improved glucose sensitivity and several metabolic parameters (plasma insulin, uric acid, and HDL cholesterol). In the liver, empagliflozin reduced ectopic lipid accumulation, lipoperoxidation, inflammation and pro-inflammatory HETEs, while increasing anti-inflammatory EETs. In addition, empagliflozin improved cardiac function (systolic, diastolic and pumping) independent of blood pressure. The results of our study suggest that hepatoprotection plays a decisive role in the beneficial effects of empagliflozin in preventing the progression of cardiac dysfunction induced by high-fat diet feeding.
- MeSH
- benzhydrylové sloučeniny * farmakologie MeSH
- dieta s vysokým obsahem tuků * škodlivé účinky MeSH
- glifloziny * farmakologie MeSH
- glukosidy * farmakologie MeSH
- hypertenze farmakoterapie MeSH
- játra * účinky léků metabolismus patologie MeSH
- kardiotonika farmakologie MeSH
- krevní glukóza metabolismus účinky léků MeSH
- krevní tlak účinky léků MeSH
- krysa rodu rattus MeSH
- ledviny účinky léků metabolismus patologie MeSH
- ochranné látky farmakologie MeSH
- potkani inbrední SHR * MeSH
- ztučnělá játra prevence a kontrola farmakoterapie MeSH
- zvířata MeSH
- Check Tag
- krysa rodu rattus MeSH
- mužské pohlaví MeSH
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- Publikační typ
- abstrakt z konference MeSH
- Publikační typ
- abstrakt z konference MeSH
- Publikační typ
- abstrakt z konference MeSH