BACKGROUND: The indole derivatives and the N-phenylpiperazine fragment represent interesting molecular moieties suitable for the research of new potentially biologically active compounds. This study was undertaken to identify if indol-2-carboxylic acid esters containing N-phenylpiperazine moiety possess acetylcholinesterase and butyrylcholinesterase inhibitory activity. MATERIALS AND METHODS: The study dealt with the synthesis of a novel series of analogs of 1H-indole-2- carboxylic acid and 3-methyl-1H-indole-2-carboxylic acid. The structure of the derivatives was represented by the indolylcarbonyloxyaminopropanol skeleton with the attached N-phenylpiperazine or diethylamine moiety, which formed a basic part of the molecule. The final products were synthesized as dihydrochloride salts, fumaric acid salts, and quaternary ammonium salts. The first step of the synthetic pathway led to the preparation of esters of 1H-indole-2-carboxylic acid from the commercially available 1H-indole-2-carboxylic acid. The Fischer indole synthesis was used to synthesize derivatives of 3-methyl-1H-indole-2-carboxylic acid. RESULTS AND DISCUSSION: Final 18 indolylcarbonyloxyaminopropanols in the form of dihydrochlorides, fumarates, and quaternary ammonium salts were prepared using various optimization ways. The very efficient way for the formation of 3-methyl-1H-indole-2-carboxylate (Fischer indole cyclization product) was the one-pot synthesis of phenylhydrazine with methyl 2-oxobutanoate with acetic acid and sulphuric acid as catalysts. CONCLUSION: Most of the derivatives comprised of an attached N-phenylpiperazine group, which formed a basic part of the molecule and in which the phenyl ring was substituted in position C-2 or C-4. The synthesized compounds were subjected to cholinesterase-inhibiting activity evaluation, by modified Ellman method. Quaternary ammonium salt of 1H-indole-2-carboxylic acid which contain N-phenylpiperazine fragment with nitro group in position C-4 (7c) demonstrated the most potent activity against acetylcholinesterase.
- MeSH
- acetylcholinesterasa chemie MeSH
- butyrylcholinesterasa chemie MeSH
- cholinesterasové inhibitory chemická syntéza chemie MeSH
- Electrophorus MeSH
- enzymatické testy MeSH
- estery chemická syntéza chemie MeSH
- indoly chemická syntéza chemie MeSH
- koně MeSH
- piperaziny chemická syntéza chemie MeSH
- zvířata MeSH
- Check Tag
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
Koronavírus 2 vyvolávajúci ťažký akútny respiračný syndróm (SARS-CoV-2) a pandémia ochorenia COVID-19 (COrona VIrus Disease-19), ktoré je týmto vírusom zapríčinené, v priebehu polroka zmenili svet. Deficit efektívnej terapie COVID-19, spolu s jeho etiológiou, rezultovali v čase písania tejto publikácie do viac ako 500 000 potvrdených úmrtí a globálna ekonomika je na nevídanej, bezprecedentne nízkej úrovni s neznámymi krátkodobými a dlhodobými dôsledkami. Ingavirín je považovaný za netoxické širokospektrálne antivirotikum s komplexným mechanizmom pôsobenia. Zlúčenina bola pôvodne projektovaná pre profylaxiu a liečbu chrípky, ktorá je zapríčinená vírusmi chrípky antigénnych typov A a B a pre liečbu ďalších akútnych respiračných ochorení vyvolaných inými vírusmi. V publikácii je formulovaná hypotéza o účinnosti tejto molekuly obsahujúcej 1H-imidazol-4-ylový heterocyklus proti SARS-CoV-2. Aktivita by mohla súvisieť so schopnosťou derivátu interferovať so špecifickými heterogénnymi nukleárnymi ribonukleoproteínmi (napríklad s typom A1). Tieto špecifické RNA-viažuce proteíny vykazovali afinitu k nukleokapsidovému proteínu (N-proteínu) koronavírusu vyvolávajúceho ťažký akútny respiračný syndróm (SARS-CoV), ktorý sa vyznačuje vysokou homológiou s N-proteínom SARS-CoV-2 vyjadrenou sekvenčnou zhodou 90,25 %. Narušenie optimálnych interakcií medzi nukleárnymi ribonukleoproteínmi a nukleokapsidovým proteínom SARS-CoV-2 by mohli rezultovať do inhibície replikačného cyklu tohto vírusu. Aditívne imunomodulačné vlastnosti ingavirínu by mohli byť výhodné pre indukciu adaptívnej imunity hostiteľských buniek.
The Severe Acute Respiratory Coronavirus 2 (SARS--CoV-2) and Coronavirus Disease-19 (COVID-19) pandemic, caused by the virus, have changed the world in just half a year. Lack of effective treatment, coupled with etiology of COVID-19, has resulted in more than 500,000 confirmed deaths at the time of writing, and the global economy is at an unseen unprecedented low level with unknown near- and long-term consequences. Ingavirin has been considered a non-toxic broad-spectrum antiviral with a complex mechanism of action. The molecule was originally designed for the prophylaxis and treatment of flu caused by both Influenza A and B viruses and for the treatment of viral causes of acute respiratory illness. The article hypothesized that the efficiency of given 1H-imidazol-4-yl heterocyclic scaffold-containing compound against SARS-CoV-2 might be connected with its ability to interfere with specific heterogeneous nuclear ribonucleoproteins (A1, for example). These specific cellular RNA-binding proteins showed affinity to Severe Acute Respiratory Coronavirus (SARS-CoV) nucleocapsid (N) protein, which shared high homology with the N protein of SARS-CoV-2 and the fact was expressed by a sequence identity of 90.52%. Impairing of the interactions between nuclear ribonucleoproteins and nucleocapsid (N) protein of SARS-CoV-2 might result in the inhibition of a viral replication cycle. Additional immunomodulating properties of ingavirin could be favorable for induction of adaptive immunity of host cells.
- Klíčová slova
- SARS-CoV2, ingavirin,
- MeSH
- antivirové látky farmakologie terapeutické užití MeSH
- Betacoronavirus účinky léků MeSH
- COVID-19 * MeSH
- farmakoterapie COVID-19 MeSH
- heterogenní jaderné ribonukleoproteiny MeSH
- imidazoly terapeutické užití MeSH
- kapronáty terapeutické užití MeSH
- koronavirové infekce farmakoterapie MeSH
- lidé MeSH
- nukleokapsida - proteiny MeSH
- Check Tag
- lidé MeSH
Aryloxyphenylpiperazinylpropanols are a group of compounds exhibiting a wide range of biological activities, affecting the central nervous system and many cardiovascular mechanisms among them. As cardiovascular agents, aryloxyphenylpiperazinylpropanols work as antihypertensives, antiarrhythmics, cardiotonics or antiaggregants. The mechanism of action is almost always an α1-adrenolytic or combined α1- and β-adrenolytic effect, but sometimes other mechanisms (e.g., Ca2+ antagonism or phosphodiesterase inhibition) can positively participate. In some cases, compounds with a small modification of the connecting chain also exhibit the desired cardiovascular effects. Several studies dealt with chirality of aryloxyphenylpiperazinylpropanols and determined the differences between the particular activities of racemic and enantiomeric compounds.
- MeSH
- kardiovaskulární látky chemie farmakologie MeSH
- piperaziny chemie MeSH
- propanolaminy chemie farmakologie MeSH
- vztahy mezi strukturou a aktivitou MeSH
- zvířata MeSH
- Check Tag
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- přehledy MeSH
3-[4-(Substituted)phenyl-/4-(diphenylmethyl)phenylpiperazin-1-yl]-2-hydroxypropyl-1-[(substituted)phenyl]carbamates and their salts with hydrochloric acid were synthesized, characterized, and tested in vitro against Staphylococcus aureus ATCC 29213 and Enterococcus faecalis ATCC 29212 as reference and quality control strains, against three methicillin-resistant isolates of S. aureus, and three isolates of vancomycin-resistant E. faecalis. All the compounds were evaluated against Mycobacterium tuberculosis H37Ra/ATCC 25177, M. kansasii DSM 44162, and M. smegmatis ATCC 700084. All of the tested compounds demonstrated very good activity against all the tested strains/isolates comparable with or better than that of clinically used drugs (ampicillin, ciprofloxacin, vancomycin, isoniazid). 1-[{(3-Trifluoromethyl)phenyl}carbamoyloxy-2-hydroxypropyl]-4-(3,4-dichlorophenyl)piperazin-1-ium chloride demonstrated the highest potency against all the tested strains/isolates (MICs ranged from 3.78 to 30.2 µM), and 1-[{(3-trifluoromethyl)phenyl}carbamoyloxy-2-hydroxypropyl]-4-(diphenylmethyl)piperazin-1-ium chloride was the most effective against all the screened mycobacterial strains (MICs ranged from 3.64 to 14.5 µM). All the investigated derivatives had strong antibiofilm activity against S. aureus ATCC 29123 and a synergistic or additive effect with gentamicin against isolates of E. faecalis with both intrinsic and acquired resistance to gentamicin. The screening of the cytotoxicity of the compounds was performed using human monocytic leukemia THP-1 cells. The IC50 values of the most effective compounds ranged from ca. 2.8 to 7.3 µM; thus, it can be stated that the antimicrobial effect is closely connected with their cytotoxicity. These observations disqualify these compounds from further development as antimicrobial agents, but they can be considered potential multi-target drugs with a preferred anticancer effect with good water solubility and additional anti-infectious activity.
The stilbenoids, a group of naturally occurring phenolic compounds, are found in a variety of plants, including some berries that are used as food or for medicinal purposes. They are known to be beneficial for human health as anti-inflammatory, chemopreventive, and antioxidative agents. We have investigated a group of 19 stilbenoid substances in vitro using a cellular model of THP-1 macrophage-like cells and pyocyanin-induced oxidative stress to evaluate their antioxidant or pro-oxidant properties. Then we have determined any effects that they might have on the expression of the enzymes catalase, glutathione peroxidase, and heme oxygenase-1, and their effects on the activation of Nrf2. The experimental results showed that these stilbenoids could affect the formation of reactive oxygen species in a cellular model, producing either an antioxidative or pro-oxidative effect, depending on the structure pinostilbene (2) worked as a pro-oxidant and also decreased expression of catalase in the cell culture. Piceatannol (4) had shown reactive oxygen species (ROS) scavenging activity, whereas isorhapontigenin (18) had a mild direct antioxidant effect and activated Nrf2-antioxidant response element (ARE) system and elevated expression of Nrf2 and catalase. Their effects shown on cells in vitro warrant their further study in vivo.
- MeSH
- antioxidační responzivní elementy účinky léků MeSH
- antioxidancia chemie farmakologie MeSH
- buňky Hep G2 MeSH
- faktor 2 související s NF-E2 genetika MeSH
- lidé MeSH
- peroxidace lipidů účinky léků MeSH
- pyokyanin chemie MeSH
- stilbeny chemie farmakologie MeSH
- thiobarbituráty chemie MeSH
- Check Tag
- lidé MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
Morphine is considered a gold standard in pain treatment. Nevertheless, its use could be associated with severe side effects, including drug addiction. Thus, it is very important to understand the molecular mechanism of morphine action in order to develop new methods of pain therapy, or at least to attenuate the side effects of opioids usage. Proteomics allows for the indication of proteins involved in certain biological processes, but the number of items identified in a single study is usually overwhelming. Thus, researchers face the difficult problem of choosing the proteins which are really important for the investigated processes and worth further studies. Therefore, based on the 29 published articles, we created a database of proteins regulated by morphine administration - The Morphinome Database (addiction-proteomics.org). This web tool allows for indicating proteins that were identified during different proteomics studies. Moreover, the collection and organization of such a vast amount of data allows us to find the same proteins that were identified in various studies and to create their ranking, based on the frequency of their identification. STRING and KEGG databases indicated metabolic pathways which those molecules are involved in. This means that those molecular pathways seem to be strongly affected by morphine administration and could be important targets for further investigations. SIGNIFICANCE: The data about proteins identified by different proteomics studies of molecular changes caused by morphine administration (29 published articles) were gathered in the Morphinome Database. Unification of those data allowed for the identification of proteins that were indicated several times by distinct proteomics studies, which means that they seem to be very well verified and important for the entire process. Those proteins might be now considered promising aims for more detailed studies of their role in the molecular mechanism of morphine action.
Tertiary amines 3-(dialkylamino)-2-hydroxypropyl 4-[(alkoxycarbonyl)amino]benzoates and their quaternary ammonium salts were synthesized. The final step of synthesis of quaternary ammonium salts was carried out by microwave-assisted synthesis. Software-calculated data provided the background needed to compare fifteen new resulting compounds by their physicochemical properties. The acid dissociation constant (pKa) and lipophilicity index (log P) of tertiary amines were determined; while quaternary ammonium salts were characterized by software-calculated lipophilicity index and surface tension. Biological evaluation aimed at testing acetylcholinesterase and butyrylcholinesterase-inhibiting activity of synthesized compounds. A possible mechanism of action of these compounds was determined by molecular modelling study using combined techniques of docking; molecular dynamics simulations and quantum mechanics calculations.
- MeSH
- acetylcholinesterasa MeSH
- aktivace enzymů účinky léků MeSH
- benzoáty chemická syntéza chemie farmakologie MeSH
- butyrylcholinesterasa MeSH
- chemické modely MeSH
- cholinesterasové inhibitory chemická syntéza chemie farmakologie MeSH
- kvartérní amoniové sloučeniny chemická syntéza chemie farmakologie MeSH
- molekulární modely * MeSH
- soli chemie MeSH
- techniky syntetické chemie * MeSH
- vazba proteinů MeSH
- Publikační typ
- časopisecké články MeSH
Sphingosine kinase 1 (SphK1), the enzyme that produces the bioactive sphingolipid metabolite, sphingosine-1-phosphate, is a promising new molecular target for therapeutic intervention in cancer and inflammatory diseases. In view of its importance, the main objective of this work was to find new and more potent inhibitors for this enzyme possessing different structural scaffolds than those of the known inhibitors. Our theoretical and experimental study has allowed us to identify two new structural scaffolds (three new compounds), which could be used as starting structures for the design and then the development of new inhibitors of SphK1. Our study was carried out in different steps: virtual screening, synthesis, bioassays and molecular modelling. From our results, we propose a new dihydrobenzo[b]pyrimido[5,4-f]azepine and two alkyl{3-/4-[1-hydroxy-2-(4-arylpiperazin-1-yl)ethyl]phenyl}carbamates as initial structures for the development of new inhibitors. In addition, our molecular modelling study using QTAIM calculations, allowed us to describe in detail the molecular interactions that stabilize the different Ligand-Receptor complexes. Such analyses indicate that the cationic head of the different compounds must be refined in order to obtain an increase in the binding affinity of these ligands.
- MeSH
- fosfotransferasy s alkoholovou skupinou jako akceptorem antagonisté a inhibitory metabolismus MeSH
- inhibitory proteinkinas chemická syntéza chemie farmakologie MeSH
- kvantová teorie MeSH
- molekulární modely MeSH
- molekulární struktura MeSH
- vztah mezi dávkou a účinkem léčiva MeSH
- vztahy mezi strukturou a aktivitou MeSH
- Publikační typ
- časopisecké články MeSH
Quaternary ammonium salts (QUATs) are compounds with wide use in organic synthesis, pharmacy or other fields of industry. Thanks to their specific physical and chemical properties resulting from their amphiphilic character they are already used as phase-transfer catalysts, ionic liquids, dyes, antimicrobial agents and disinfectants, antiarrhythmics, bronchodilators etc. There is still an effort to prepare new active compounds. Several organosynthetic methods are used to prepare QUATs: probably the best way is the Menshutkin reaction. Recently, also a microwave synthesis was introduced to prepare QUATs bringing better yields, shorter reaction times and a possibility of solvent-free reactions.
Nine new dihydrochloride salts of 3-(4-arylpiperazin-1-yl)-2-hydroxypropyl 4-alkoxyethoxybenzoates were designed and synthesized. The physicochemical properties such as lipophilicity index (log kw) and dissociation constant (pKa) were experimentally determined and compared to the software calculated data. The lipophilicity index was determined by means of reversed-phase high performance liquid chromatography (RP-HPLC). The pKa values were determined by means of capillary zone electrophoresis. The "drug-likeness" properties according to the Lipinski Rule of Five and prediction of possible blood-brain barrier penetration were computed and discussed.
- MeSH
- benzoáty chemická syntéza chemie MeSH
- chemické jevy MeSH
- chromatografie s reverzní fází metody MeSH
- hydrofobní a hydrofilní interakce MeSH
- koncentrace vodíkových iontů MeSH
- lipidy chemie MeSH
- software * MeSH
- vysokoúčinná kapalinová chromatografie metody MeSH
- Publikační typ
- časopisecké články MeSH