UNLABELLED: Transmission of genetic material from one generation to the next is a fundamental feature of all living cells. In eukaryotes, a macromolecular complex called the kinetochore plays crucial roles during chromosome segregation by linking chromosomes to spindle microtubules. Little is known about this process in evolutionarily diverse protists. Within the supergroup Discoba, Euglenozoa forms a speciose group of unicellular flagellates-kinetoplastids, euglenids, and diplonemids. Kinetoplastids have an unconventional kinetochore system, while euglenids have subunits that are conserved among most eukaryotes. For diplonemids, a group of extremely diverse and abundant marine flagellates, it remains unclear what kind of kinetochores are present. Here, we employed deep homology detection protocols using profile-versus-profile Hidden Markov Model searches and AlphaFold-based structural comparisons to detect homologies that might have been previously missed. Interestingly, we still could not detect orthologs for most of the kinetoplastid or canonical kinetochore subunits with few exceptions including a putative centromere-specific histone H3 variant (cenH3/CENP-A), the spindle checkpoint protein Mad2, the chromosomal passenger complex members Aurora and INCENP, and broadly conserved proteins like CLK kinase and the meiotic synaptonemal complex proteins SYCP2/3 that also function at kinetoplastid kinetochores. We examined the localization of five candidate kinetochore-associated proteins in the model diplonemid, Paradiplonema papillatum. PpCENP-A shows discrete dots in the nucleus, implying that it is likely a kinetochore component. PpMad2, PpCLKKKT10/19, PpSYCP2L1KKT17/18, and PpINCENP reside in the nucleus, but no clear kinetochore localization was observed. Altogether, these results point to the possibility that diplonemids evolved a hitherto unknown type of kinetochore system. IMPORTANCE: A macromolecular assembly called the kinetochore is essential for the segregation of genetic material during eukaryotic cell division. Therefore, characterization of kinetochores across species is essential for understanding the mechanisms involved in this key process across the eukaryotic tree of life. In particular, little is known about kinetochores in divergent protists such as Euglenozoa, a group of unicellular flagellates that includes kinetoplastids, euglenids, and diplonemids, the latter being a highly diverse and abundant component of marine plankton. While kinetoplastids have an unconventional kinetochore system and euglenids have a canonical one similar to traditional model eukaryotes, preliminary searches detected neither unconventional nor canonical kinetochore components in diplonemids. Here, we employed state-of-the-art deep homology detection protocols but still could not detect orthologs for the bulk of kinetoplastid-specific nor canonical kinetochore proteins in diplonemids except for a putative centromere-specific histone H3 variant. Our results suggest that diplonemids evolved kinetochores that do not resemble previously known ones.
Centromeres in the legume genera Pisum and Lathyrus exhibit unique morphological characteristics, including extended primary constrictions and multiple separate domains of centromeric chromatin. These so-called metapolycentromeres resemble an intermediate form between monocentric and holocentric types, and therefore provide a great opportunity for studying the transitions between different types of centromere organizations. However, because of the exceedingly large and highly repetitive nature of metapolycentromeres, highly contiguous assemblies needed for these studies are lacking. Here, we report on the assembly and analysis of a 177.6 Mb region of pea (Pisum sativum) chromosome 6, including the 81.6 Mb centromere region (CEN6) and adjacent chromosome arms. Genes, DNA methylation profiles, and most of the repeats were uniformly distributed within the centromere, and their densities in CEN6 and chromosome arms were similar. The exception was an accumulation of satellite DNA in CEN6, where it formed multiple arrays up to 2 Mb in length. Centromeric chromatin, characterized by the presence of the CENH3 protein, was predominantly associated with arrays of three different satellite repeats; however, five other satellites present in CEN6 lacked CENH3. The presence of CENH3 chromatin was found to determine the spatial distribution of the respective satellites during the cell cycle. Finally, oligo-FISH painting experiments, performed using probes specifically designed to label the genomic regions corresponding to CEN6 in Pisum, Lathyrus, and Vicia species, revealed that metapolycentromeres evolved via the expansion of centromeric chromatin into neighboring chromosomal regions and the accumulation of novel satellite repeats. However, in some of these species, centromere evolution also involved chromosomal translocations and centromere repositioning.
- MeSH
- centromera genetika MeSH
- chromatin genetika MeSH
- hrách setý * genetika MeSH
- lidé MeSH
- lidské chromozomy, pár 6 * MeSH
- satelitní DNA genetika MeSH
- Check Tag
- lidé MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
Satellite DNAs are present on every chromosome in the cell and are typically enriched in repetitive, heterochromatic parts of the human genome. Sex chromosomes represent a unique genomic and epigenetic context. In this review, we first report what is known about satellite DNA biology on human X and Y chromosomes, including repeat content and organization, as well as satellite variation in typical euploid individuals. Then, we review sex chromosome aneuploidies that are among the most common types of aneuploidies in the general population, and are better tolerated than autosomal aneuploidies. This is demonstrated also by the fact that aging is associated with the loss of the X, and especially the Y chromosome. In addition, supernumerary sex chromosomes enable us to study general processes in a cell, such as analyzing heterochromatin dosage (i.e. additional Barr bodies and long heterochromatin arrays on Yq) and their downstream consequences. Finally, genomic and epigenetic organization and regulation of satellite DNA could influence chromosome stability and lead to aneuploidy. In this review, we argue that the complete annotation of satellite DNA on sex chromosomes in human, and especially in centromeric regions, will aid in explaining the prevalence and the consequences of sex chromosome aneuploidies.
- MeSH
- aneuploidie MeSH
- centromera genetika MeSH
- heterochromatin * genetika MeSH
- lidé MeSH
- lidské chromozomy MeSH
- pohlavní chromozomy genetika MeSH
- satelitní DNA * genetika MeSH
- Check Tag
- lidé MeSH
- Publikační typ
- časopisecké články MeSH
- přehledy MeSH
To understand general features in evolution of kinetochore organization, investigating a wide range of mitotic mechanisms in various non-model eukaryotes is necessary. A binucleate flagellate Giardia intestinalis is a representative of highly divergent eukaryotic lineage of Metamonads. FIB/SEM tomography was used to investigate ultrastructural details of its mitotic architecture, including kinetochores. Giardia undergoes semi-open mitosis, with the nuclear envelope remaining intact except for polar fenestrae, allowing microtubules to enter the nucleoplasm. At the onset of mitosis, the nuclear envelope bends inward, forming a concave depression at the spindle poles. Spindle microtubules emanate from a cytoplasmic fuzzy microtubule organizing center near the flagellar basal bodies. Kinetochoral microtubules enter the nucleoplasm and bind to kinetochores. A small bipartite kinetochore composed of a dense inner disk, approximately 46 nm in diameter, and a two-armed outer fork, is attached to just one microtubule. To our knowledge, this is the first in situ evidence of a one-microtubule attachment to a kinetochore, which could represent a basic eukaryotic situation.
During homologous recombination, Dbl2 protein is required for localisation of Fbh1, an F-box helicase that efficiently dismantles Rad51-DNA filaments. RNA-seq analysis of dbl2Δ transcriptome showed that the dbl2 deletion results in upregulation of more than 500 loci in Schizosaccharomyces pombe. Compared with the loci with no change in expression, the misregulated loci in dbl2Δ are closer to long terminal and long tandem repeats. Furthermore, the misregulated loci overlap with antisense transcripts, retrotransposons, meiotic genes and genes located in subtelomeric regions. A comparison of the expression profiles revealed that Dbl2 represses the same type of genes as the HIRA histone chaperone complex. Although dbl2 deletion does not alleviate centromeric or telomeric silencing, it suppresses the silencing defect at the outer centromere caused by deletion of hip1 and slm9 genes encoding subunits of the HIRA complex. Moreover, our analyses revealed that cells lacking dbl2 show a slight increase of nucleosomes at transcription start sites and increased levels of methylated histone H3 (H3K9me2) at centromeres, subtelomeres, rDNA regions and long terminal repeats. Finally, we show that other proteins involved in homologous recombination, such as Fbh1, Rad51, Mus81 and Rad54, participate in the same gene repression pathway.
- MeSH
- centromera MeSH
- histonový kód MeSH
- homologní rekombinace * MeSH
- nukleozomy metabolismus MeSH
- proteiny buněčného cyklu antagonisté a inhibitory metabolismus MeSH
- regulace genové exprese u hub * MeSH
- represorové proteiny fyziologie MeSH
- Schizosaccharomyces pombe - proteiny antagonisté a inhibitory metabolismus fyziologie MeSH
- Schizosaccharomyces genetika MeSH
- transkripční faktory antagonisté a inhibitory metabolismus MeSH
- umlčování genů * MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
Hybridization of closely related plant species is frequently connected to endosperm arrest and seed failure, for reasons that remain to be identified. In this study, we investigated the molecular events accompanying seed failure in hybrids of the closely related species pair Capsella rubella and C. grandiflora. Mapping of QTL for the underlying cause of hybrid incompatibility in Capsella identified three QTL that were close to pericentromeric regions. We investigated whether there are specific changes in heterochromatin associated with interspecific hybridizations and found a strong reduction of chromatin condensation in the endosperm, connected with a strong loss of CHG and CHH methylation and random loss of a single chromosome. Consistent with reduced DNA methylation in the hybrid endosperm, we found a disproportionate deregulation of genes located close to pericentromeric regions, suggesting that reduced DNA methylation allows access of transcription factors to targets located in heterochromatic regions. Since the identified QTL were also associated with pericentromeric regions, we propose that relaxation of heterochromatin in response to interspecies hybridization exposes and activates loci leading to hybrid seed failure.
- MeSH
- Capsella klasifikace genetika MeSH
- centromera genetika MeSH
- chromatin genetika metabolismus MeSH
- chromozomální aberace MeSH
- druhová specificita MeSH
- endosperm genetika MeSH
- heterochromatin genetika metabolismus MeSH
- hybridizace genetická * MeSH
- lokus kvantitativního znaku genetika MeSH
- metylace DNA MeSH
- regulace genové exprese u rostlin MeSH
- rostlinné geny genetika MeSH
- semena rostlinná genetika MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
Ever since the introduction of high-throughput sequencing following the human genome project, assembling short reads into a reference of sufficient quality posed a significant problem as a large portion of the human genome-estimated 50-69%-is repetitive. As a result, a sizable proportion of sequencing reads is multi-mapping, i.e., without a unique placement in the genome. The two key parameters for whether or not a read is multi-mapping are the read length and genome complexity. Long reads are now able to span difficult, heterochromatic regions, including full centromeres, and characterize chromosomes from "telomere to telomere". Moreover, identical reads or repeat arrays can be differentiated based on their epigenetic marks, such as methylation patterns, aiding in the assembly process. This is despite the fact that long reads still contain a modest percentage of sequencing errors, disorienting the aligners and assemblers both in accuracy and speed. Here, I review the proposed and implemented solutions to the repeat resolution and the multi-mapping read problem, as well as the downstream consequences of reference choice, repeat masking, and proper representation of sex chromosomes. I also consider the forthcoming challenges and solutions with regards to long reads, where we expect the shift from the problem of repeat localization within a single individual to the problem of repeat positioning within pangenomes.
- MeSH
- centromera chemie MeSH
- délka genomu MeSH
- genom lidský * MeSH
- lidé MeSH
- mapování chromozomů metody MeSH
- metylace DNA MeSH
- mikrosatelitní repetice * MeSH
- pohlavní chromozomy chemie MeSH
- telomery chemie MeSH
- výpočetní biologie metody MeSH
- Check Tag
- lidé MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- přehledy MeSH
The importance of DNA structure in the regulation of basic cellular processes is an emerging field of research. Among local non-B DNA structures, inverted repeat (IR) sequences that form cruciforms and G-rich sequences that form G-quadruplexes (G4) are found in all prokaryotic and eukaryotic organisms and are targets for regulatory proteins. We analyzed IRs and G4 sequences in the genome of the most important biotechnology microorganism, S. cerevisiae. IR and G4-prone sequences are enriched in specific genomic locations and differ markedly between mitochondrial and nuclear DNA. While G4s are overrepresented in telomeres and regions surrounding tRNAs, IRs are most enriched in centromeres, rDNA, replication origins and surrounding tRNAs. Mitochondrial DNA is enriched in both IR and G4-prone sequences relative to the nuclear genome. This extensive analysis of local DNA structures adds to the emerging picture of their importance in genome maintenance, DNA replication and transcription of subsets of genes.
Amplification of monomer sequences into long contiguous arrays is the main feature distinguishing satellite DNA from other tandem repeats, yet it is also the main obstacle in its investigation because these arrays are in principle difficult to assemble. Here we explore an alternative, assembly-free approach that utilizes ultra-long Oxford Nanopore reads to infer the length distribution of satellite repeat arrays, their association with other repeats and the prevailing sequence periodicities. Using the satellite DNA-rich legume plant Lathyrus sativus as a model, we demonstrated this approach by analyzing 11 major satellite repeats using a set of nanopore reads ranging from 30 to over 200 kb in length and representing 0.73× genome coverage. We found surprising differences between the analyzed repeats because only two of them were predominantly organized in long arrays typical for satellite DNA. The remaining nine satellites were found to be derived from short tandem arrays located within LTR-retrotransposons that occasionally expanded in length. While the corresponding LTR-retrotransposons were dispersed across the genome, this array expansion occurred mainly in the primary constrictions of the L. sativus chromosomes, which suggests that these genome regions are favourable for satellite DNA accumulation.
- MeSH
- centromera MeSH
- chromozomy rostlin MeSH
- DNA rostlinná genetika MeSH
- frekvence genu * MeSH
- genom rostlinný MeSH
- heterochromatin MeSH
- Lathyrus genetika MeSH
- molekulární evoluce MeSH
- nanopóry * MeSH
- retroelementy * MeSH
- satelitní DNA * MeSH
- tandemové repetitivní sekvence * MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
Centromeres define the chromosomal position where kinetochores form to link the chromosome to microtubules during mitosis and meiosis. Centromere identity is determined by incorporation of a specific histone H3 variant termed CenH3. As for other histones, escort and deposition of CenH3 must be ensured by histone chaperones, which handle the non-nucleosomal CenH3 pool and replenish CenH3 chromatin in dividing cells. Here, we show that the Arabidopsis orthologue of the mammalian NUCLEAR AUTOANTIGENIC SPERM PROTEIN (NASP) and Schizosaccharomyces pombe histone chaperone Sim3 is a soluble nuclear protein that binds the histone variant CenH3 and affects its abundance at the centromeres. NASPSIM3 is co-expressed with Arabidopsis CenH3 in dividing cells and binds directly to both the N-terminal tail and the histone fold domain of non-nucleosomal CenH3. Reduced NASPSIM3 expression negatively affects CenH3 deposition, identifying NASPSIM3 as a CenH3 histone chaperone.