Euglenophyceae are unicellular algae with the majority of their diversity known from small freshwater reservoirs. Only two dozen species have been described to occur in marine habitats, but their abundance and diversity remain unexplored. Phylogenetic studies revealed marine prasinophyte green alga, Pyramimonas parkeae, as the closest extant relative of the euglenophytes' plastid, but similarly to euglenophytes, our knowledge about the diversity of Pyramimonadales is limited. Here we explored Euglenophyceae and Pyramimonadales phylogenetic diversity in marine environmental samples. We yielded 18S rDNA and plastid 16S rDNA sequences deposited in public repositories and reconstructed Euglenophyceae reference trees. We searched high-throughput environmental sequences from the TARA Oceans expedition and Ocean Sampling Day initiative for 18S rDNA and 16S rDNA, placed them in the phylogenetic context and estimated their relative abundances. To avoid polymerase chain reaction (PCR) bias, we also exploited metagenomic data from the TARA Oceans expedition for the presence of rRNA sequences from these groups. Finally, we targeted these protists in coastal samples by specific PCR amplification of two parts of the plastid genome uniquely shared between euglenids and Pyramimonadales. All approaches revealed previously undetected, but relatively low-abundant lineages of marine Euglenophyceae. Surprisingly, some of those lineages are branching within the freshwater or brackish genera.
- MeSH
- Chlorophyta klasifikace genetika MeSH
- DNA rostlinná genetika MeSH
- Euglenida klasifikace genetika MeSH
- fotosyntéza MeSH
- fylogeneze MeSH
- genom chloroplastový * MeSH
- genom rostlinný MeSH
- polymerázová řetězová reakce MeSH
- ribozomální DNA genetika MeSH
- RNA ribozomální 18S genetika MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
A terrestrial green microalga was isolated at Ås, in Akershus County, Norway. The strain corresponded to a coccoid chlorophyte. Morphological characteristics by light and electron microscopy, in conjunction with DNA amplification and sequencing of the 18 s rDNA gene and ITS sequences, were used to identify the microalgae. The characteristics agree with those of the genus Coelastrella defined by Chodat, and formed a sister group with the recently described C. thermophila var. globulina. Coelastrella is a relatively small numbered genus that has not been observed in continental Norway before; there are no previous cultures available in collections of Norwegian strains. Gas chromatography analyses of the FAME-derivatives showed a high percentage of polyunsaturated fatty acids (44-45%) especially linolenic acid (C18:3n3; 30-34%). After the stationary phase, the cultures were able to accumulate several carotenoids as neoxanthin, pheophytin a, astaxanthin, canthaxanthin, lutein, and violaxanthin. Due to the scarcity of visual characters suitable for diagnostic purposes and the lack of DNA sequence information, there is a high possibility that species of this genus have been neglected in local environmental studies, even though it showed interesting properties for algal biotechnology.
- MeSH
- biologické pigmenty analýza MeSH
- biotechnologie MeSH
- Chlorophyta klasifikace cytologie genetika MeSH
- druhová specificita MeSH
- feofytiny analýza MeSH
- fylogeneze * MeSH
- karotenoidy analýza MeSH
- kyselina alfa-linolenová analýza MeSH
- mastné kyseliny analýza MeSH
- mikrořasy klasifikace cytologie genetika izolace a purifikace MeSH
- ribozomální DNA MeSH
- RNA ribozomální 18S genetika MeSH
- xanthofyly MeSH
- Publikační typ
- časopisecké články MeSH
- Geografické názvy
- Norsko MeSH
The Neoproterozoic Era records the transition from a largely bacterial to a predominantly eukaryotic phototrophic world, creating the foundation for the complex benthic ecosystems that have sustained Metazoa from the Ediacaran Period onward. This study focuses on the evolutionary origins of green seaweeds, which play an important ecological role in the benthos of modern sunlit oceans and likely played a crucial part in the evolution of early animals by structuring benthic habitats and providing novel niches. By applying a phylogenomic approach, we resolve deep relationships of the core Chlorophyta (Ulvophyceae or green seaweeds, and freshwater or terrestrial Chlorophyceae and Trebouxiophyceae) and unveil a rapid radiation of Chlorophyceae and the principal lineages of the Ulvophyceae late in the Neoproterozoic Era. Our time-calibrated tree points to an origin and early diversification of green seaweeds in the late Tonian and Cryogenian periods, an interval marked by two global glaciations with strong consequent changes in the amount of available marine benthic habitat. We hypothesize that unicellular and simple multicellular ancestors of green seaweeds survived these extreme climate events in isolated refugia, and diversified in benthic environments that became increasingly available as ice retreated. An increased supply of nutrients and biotic interactions, such as grazing pressure, likely triggered the independent evolution of macroscopic growth via different strategies, including true multicellularity, and multiple types of giant-celled forms.
Melting snowfields in polar and alpine regions often exhibit a red and orange colouration caused by microalgae. The diversity of these organisms is still poorly understood. We applied a polyphasic approach using three molecular markers and light and electron microscopy to investigate spherical cysts sampled from alpine mountains in Europe, North America and South America as well as from both polar regions. Molecular analyses revealed the presence of a single independent lineage within the Chlamydomonadales. The genus Sanguina is described, with Sanguina nivaloides as its type. It is distinguishable from other red cysts forming alga by the number of cell wall layers, cell size, cell surface morphology and habitat preference. Sanguina nivaloides is a diverse species containing a total of 18 haplotypes according to nuclear ribosomal DNA internal transcribed spacer 2, with low nucleotide divergence (≤3.5%). Based on molecular data we demonstrate that it has a cosmopolitan distribution with an absence of geographical structuring, indicating an effective dispersal strategy with the cysts being transported all around the globe, including trans-equatorially. Additionally, Sanguina aurantia is described, with small spherical orange cysts often clustered by means of mucilaginous sheaths, and causing orange blooms in snow in subarctic and Arctic regions.
- MeSH
- Chlorophyta klasifikace genetika fyziologie MeSH
- ekosystém MeSH
- fylogeneze MeSH
- fylogeografie MeSH
- mezerníky ribozomální DNA MeSH
- Rhodophyta MeSH
- sníh mikrobiologie MeSH
- zmrazování MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- Geografické názvy
- Evropa MeSH
- Jižní Amerika MeSH
- Severní Amerika MeSH
Ecological preferences, partner compatibility, or partner availability are known to be important factors shaping obligate and intimate lichen symbioses. We considered a complex of Cladonia species, traditionally differentiated by the extent of sexual reproduction and the type of vegetative propagules, to assess if the reproductive and dispersal strategies affect mycobiont-photobiont association patterns. In total 85 lichen thalli from 72 European localities were studied, two genetic markers for both Cladonia mycobionts and Asterochloris photobionts were analyzed. Variance partitioning analysis by multiple regression on distance matrices was performed to describe and partition variance in photobiont genetic diversity. Asexually reproducing Cladonia in our study were found to be strongly specific to their photobionts, associating with only two closely related Asterochloris species. In contrast, sexually reproducing lichens associated with seven unrelated Asterochloris lineages, thus being photobiont generalists. The reproductive mode had the largest explanatory power, explaining 44% of the total photobiont variability. Reproductive and dispersal strategies are the key factors shaping photobiont diversity in this group of Cladonia lichens. A strict photobiont specialisation observed in two studied species may steer both evolutionary flexibility and responses to ecological changes of these organisms, and considerably limit their distribution ranges.
- MeSH
- Ascomycota klasifikace MeSH
- biodiverzita * MeSH
- Chlorophyta klasifikace genetika MeSH
- fylogeneze MeSH
- lišejníky klasifikace genetika MeSH
- rozmnožování MeSH
- šíření semen fyziologie MeSH
- symbióza * MeSH
- zeměpis MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- Geografické názvy
- Evropa MeSH
The aim of this study was to reveal the taxonomic position and phylogenetic relationships of the dominant planktic algae in two acid metal-rich lakes of different origin (Hromnice Lake and Plešné Lake, Czech Republic) and to investigate their morphology and ultrastructure under natural and laboratory conditions. Phylogenetic analyses (18S rRNA and ITS-2) revealed that the strain isolated from Hromnice Lake belongs to the species Coccomyxa elongata, while Coccomyxa from Plešné Lake was described as a new species C. silvae-gabretae. It is the first evidence that representatives of this genus are capable of becoming the dominant primary producers in the extreme environment of acid lakes with an increased supply of phosphorus. There were clear differences in cell morphology under different growth conditions, revealing the high phenotypic plasticity of the strains. The ability to change the morphology may help the cells of Coccomyxa to survive harsh conditions in the aforementioned acid lakes.
The aim of this study was to assess the phylogenetic relationships, ecology and ecophysiological characteristics of the dominant planktic algae in ice-covered lakes on James Ross Island (northeastern Antarctic Peninsula). Phylogenetic analyses of 18S rDNA together with analysis of ITS2 rDNA secondary structure and cell morphology revealed that the two strains belong to one species of the genus Monoraphidium (Chlorophyta, Sphaeropleales, Selenastraceae) that should be described as new in future. Immotile green algae are thus apparently capable to become the dominant primary producer in the extreme environment of Antarctic lakes with extensive ice-cover. The strains grew in a wide temperature range, but the growth was inhibited at temperatures above 20 °C, indicating their adaptation to low temperature. Preferences for low irradiances reflected the light conditions in their original habitat. Together with relatively high growth rates (0.4-0.5 day(-1)) and unprecedently high content of polyunsaturated fatty acids (PUFA, more than 70% of total fatty acids), it makes these isolates interesting candidates for biotechnological applications.
- MeSH
- biodiverzita * MeSH
- Chlorophyta klasifikace genetika metabolismus MeSH
- fytoplankton klasifikace genetika izolace a purifikace metabolismus MeSH
- fyziologická adaptace MeSH
- jezera MeSH
- ledový příkrov * MeSH
- nenasycené mastné kyseliny metabolismus MeSH
- RNA ribozomální 18S genetika MeSH
- Publikační typ
- časopisecké články MeSH
- Geografické názvy
- Antarktida MeSH
The family Oocystaceae (Chlorophyta) is a group of morphologically and ultrastructurally distinct green algae that constitute a well-supported clade in the class Trebouxiophyceae. Despite the family's clear delimitation, which is based on specific cell wall features, only a few members of the Oocystaceae have been examined using data other than morphological. In previous studies of Trebouxiophyceae, after the establishment of molecular phylogeny, the taxonomic status of the family was called into question. The genus Oocystis proved to be paraphyletic and some species were excluded from Oocystaceae, while a few other species were newly redefined as members of this family. We investigated 54 strains assigned to the Oocystaceae using morphological, ultrastructural and molecular data (SSU rRNA and rbcL genes) to clarify the monophyly of and diversity within Oocystaceae. Oonephris obesa and Nephrocytium agardhianum clustered within the Chlorophyceae and thus are no longer members of the Oocystaceae. On the other hand, we transferred the coenobial Willea vilhelmii to the Oocystaceae. Our findings combined with those of previous studies resulted in the most robust definition of the family to date. The division of the family into three subfamilies and five morphological clades was suggested. Taxonomical adjustments in the genera Neglectella, Oocystidium, Oocystis, and Ooplanctella were established based on congruent molecular and morphological data. We expect further taxonomical changes in the genera Crucigeniella, Eremosphaera, Franceia, Lagerheimia, Oocystis, and Willea in the future.
Coccoid green algae traditionally classified in Dictyochloropsis have a complex, reticulate chloroplast, when mature, without a pyrenoid. They occupy remarkably diverse ecological niches as free-living organisms or in association with lichen-forming fungi and were recently shown to form two distinct lineages within Trebouxiophyceae. We used a polyphasic approach to revise the taxonomy of the genus. Based on phylogenetic analysis of the 18S rRNA gene, and detailed morphological investigation using comparative conventional light and confocal microscopy, we have assigned these lineages to two genera, Dictyochloropsis and Symbiochloris gen. nov. We have reconsidered the diagnostic generic features as follows: Dictyochloropsis comprises only free-living algae with a reticulate chloroplast, forming lobes in a parallel arrangement at some ontogenetic stages, and which reproduce only by means of autospores. This agrees with Geitler's original diagnosis of Dictyochloropsis, but not with the later emendation by Tschermak-Woess. Consequently, the species of Dictyochloropsis sensu Tschermak-Woess are assigned to Symbiochloris, with new combinations proposed. Symbiochloris encompasses free-living and/or lichenized algae with lobed chloroplasts and that reproduce by forming zoospores characterized by two subapical isokont flagella that emerge symmetrically near the flattened apex. In addition, using coalescent-based approaches, morphological characters and secondary structure of ITS transcripts, we inferred species boundaries and taxonomic relationships within the newly proposed genera. Two species of Dictyochloropsis and nine species of Symbiochloris are delimited, including the newly described species D. asterochloroides, S. handae, S. tropica, and S. tschermakiae. Our results further support the non-monophyly of autosporine taxa within Trebouxiophyceae.
Chlorella and Stichococcus are morphologically simple airborne microalgae, omnipresent in terrestrial and aquatic habitats. The minute cell size and resistance against environmental stress facilitate their long-distance dispersal. However, the actual distribution of Chlorella- and Stichococcus-like species has so far been inferred only from ambiguous morphology-based evidence. Here we contribute a phylogenetic analysis of an expanded SSU and ITS2 rDNA sequence dataset representing Chlorella- and Stichococcus-like species from terrestrial habitats of polar, temperate and tropical regions. We aim to uncover biogeographical patterns at low taxonomic levels. We found that psychrotolerant strains of Chlorella and Stichococcus are closely related with strains originating from the temperate zone. Species closely related to Chlorella vulgaris and Muriella terrestris, and recovered from extreme terrestrial environments of polar regions and hot deserts, are particularly widespread. Stichococcus strains from the temperate zone, with their closest relatives in the tropics, differ from strains with the closest relatives being from the polar regions. Our data suggest that terrestrial Chlorella and Stichococcus might be capable of intercontinental dispersal; however, their actual distributions exhibit biogeographical patterns.
- MeSH
- biofilmy klasifikace MeSH
- Chlorella vulgaris klasifikace genetika růst a vývoj MeSH
- Chlorophyta klasifikace genetika růst a vývoj MeSH
- ekosystém MeSH
- fylogeneze MeSH
- fylogeografie MeSH
- mezerníky ribozomální DNA genetika MeSH
- studené klima * MeSH
- Publikační typ
- časopisecké články MeSH
- Geografické názvy
- Antarktida MeSH
- Arktida MeSH