Human cytosolic prolyl-tRNA synthetase (HcProRS) catalyses the formation of the prolyl-tRNAPro, playing an important role in protein synthesis. Inhibition of HcProRS activity has been shown to have potential benefits in the treatment of fibrosis, autoimmune diseases and cancer. Recently, potent pyrazinamide-based inhibitors were identified by a high-throughput screening (HTS) method, but no further elaboration was reported. The pyrazinamide core is a bioactive fragment found in numerous clinically validated drugs and has been subjected to various modifications. Therefore, we applied a virtual screening protocol to our in-house library of pyrazinamide-containing small molecules, searching for potential novel HcProRS inhibitors. We identified a series of 3-benzylaminopyrazine-2-carboxamide derivatives as positive hits. Five of them were confirmed by a thermal shift assay (TSA) with the best compounds 3b and 3c showing EC50 values of 3.77 and 7.34 µM, respectively, in the presence of 1 mM of proline (Pro) and 3.45 µM enzyme concentration. Co-crystal structures of HcProRS in complex with these compounds and Pro confirmed the initial docking studies and show how the Pro facilitates binding of the ligands that compete with ATP substrate. Modelling 3b into other human class II aminoacyl-tRNA synthetases (aaRSs) indicated that the subtle differences in the ATP binding site of these enzymes likely contribute to its potential selective binding of HcProRS. Taken together, this study successfully identified novel HcProRS binders from our anti-tuberculosis in-house compound library, displaying opportunities for repurposing old drug candidates for new applications such as therapeutics in HcProRS-related diseases.
- MeSH
- adenosintrifosfát metabolismus MeSH
- aminoacyl-tRNA-synthetasy antagonisté a inhibitory MeSH
- biotest metody MeSH
- inhibitory enzymů chemie izolace a purifikace farmakologie MeSH
- konformace proteinů MeSH
- krystalografie rentgenová MeSH
- lidé MeSH
- ligandy MeSH
- molekulární modely MeSH
- počítačová simulace * MeSH
- pyrazinamid chemie MeSH
- vazebná místa MeSH
- Check Tag
- lidé MeSH
- Publikační typ
- časopisecké články MeSH
Paeonia species have been valued for their ethnomedicinal uses in various countries and received much interest among the scientific community for their therapeutic properties, including anti-microbial, anti-inflammatory, anti-cancer, nephroprotective and hepatoprotective effects. The multiple phytotherapeutical applications of Paeonia species inspired us to establish the phytochemical fingerprint and to evaluate the biological properties of ethyl acetate, methanol, and aqueous extracts from the roots and aerial parts of two Paeonia species (P. arietina G. Anderson and P. kesrounansis Thiébaut). Phytoconstituents of P. arietina and P. kesrounansis extracts were analyzed using 1D and 2D NMR and LC-DAD-ESI-MS. The total content of phenolics (TPC) and flavonoids (TFC) in the extracts was also evaluated. The antioxidant activity was profiled using DPPH, ABTS, CUPRAC, FRAP, phosphomolybdenum, and metal chelation assays. Enzyme inhibitory properties were evaluated against acetylcholinesterase (AChE), butyrylcholinesterase (BChE), tyrosinase, α-amylase, and α-glucosidase. Phytochemical analysis of P. arietina and P. kesrounansis extracts showed the presence of galloyl esters of sugars, galloyl monoterpenes, and glycosylated flavonoids. The three solvent extracts presented different behavior in the bioassays. The highest antioxidant activity, tyrosinase and AChE inhibition were observed for the methanolic extract of the aerial parts of P. kesrounansis. In addition, the ethyl acetate extracts of the aerial parts of both plants were the most effective inhibitors of α-amylase. The highest BChE inhibition was observed for root methanolic extract of P. kesrounansis while the root ethyl acetate extract of P. arietina exerted the strongest inhibition of α-glucosidase. Methanol extract of P. kesrounansis aerial parts presented the highest TPC, while TFC was greatest in the corresponding extract of P. arietina. Our findings can be considered as a starting point for future studies to further validate the effectiveness and safety profiles of these plants in folk medicine.
- MeSH
- antioxidancia chemie izolace a purifikace farmakologie MeSH
- chromatografie kapalinová metody MeSH
- fenoly analýza izolace a purifikace MeSH
- flavonoidy analýza izolace a purifikace MeSH
- hmotnostní spektrometrie s elektrosprejovou ionizací metody MeSH
- inhibitory enzymů chemie izolace a purifikace farmakologie MeSH
- kořeny rostlin MeSH
- nadzemní části rostlin MeSH
- Paeonia chemie MeSH
- rostlinné extrakty chemie farmakologie MeSH
- rozpouštědla chemie MeSH
- Publikační typ
- časopisecké články MeSH
- srovnávací studie MeSH
Water extracts from Pleurotus ostreatus containing no statins showed 3-hydroxy-3-methyl-glutaryl CoA reductase (HMGCR) inhibitory activity (in vitro) that might be due to specific water-soluble polysaccharides (WSPs); when isolated and deproteinized, increasing concentrations of the WSP extract induced higher inhibition. The WSP extract contained mainly β-glucans, mannogalactans, and glycogen (e.g., α-glucans), although derivatives or fragments with lower molecular weights (between 14 and 3.5 kDa) were present and were able to induce the inhibitory activity. The extract contained more β-(1→3)-glucans than β-(11→3),(11→6)-glucans, and they partially survived digestion and managed to pass through Caco2 cell monolayers to the lower compartment after in vitro digestion and transport experiments. The WSP might also modulate Caco2 membrane integrity.
- MeSH
- buněčná membrána účinky léků MeSH
- Caco-2 buňky MeSH
- epitelové buňky účinky léků MeSH
- hydroxymethylglutaryl-CoA-reduktasy metabolismus MeSH
- inhibitory enzymů chemie izolace a purifikace metabolismus MeSH
- lidé MeSH
- molekulová hmotnost MeSH
- Pleurotus chemie MeSH
- polysacharidy chemie izolace a purifikace metabolismus MeSH
- Check Tag
- lidé MeSH
- Publikační typ
- časopisecké články MeSH
For decades, Hibiscus sabdariffa L. and its phytochemicals have been shown to possess a wide range of pharmacologic properties. In this study, aqueous extract of Hibiscus sabdariffa (AEHS) and its bioactive constituent protocatechuic acid (PCA), have been evaluated in vitro for their antiviral activity against HSV-2 clinical isolates and anti-enzymatic activity against urease. Antiherpetic activity was evaluated by the titer reduction assay in infected Vero cells, and cytotoxicity was evaluated by the neutral red dye-uptake method. Anti-urease activity was determined by a developed Electrospray Ionization-Mass Spectrometry (ESI-MS)-based assay. PCA showed potent anti-HSV-2 activity compared with that of acyclovir, with EC50 values of 0.92 and 1.43 µg∙mL(-1), respectively, and selectivity indices > 217 and > 140, respectively. For the first time, AEHS was shown to exert anti-urease inhibition activity, with an IC50 value of 82.4 µg∙mL(-1). This, combined with its safety, could facilitate its use in practical applications as a natural urease inhibitor. Our results present Hibiscus sabdariffa L. and its bioactive compound PCA as potential therapeutic agents in the treatment of HSV-2 infection and the treatment of diseases caused by urease-producing bacteria.
- MeSH
- acyklovir farmakologie MeSH
- antivirové látky chemie izolace a purifikace farmakologie MeSH
- Cercopithecus aethiops MeSH
- Hibiscus chemie MeSH
- hmotnostní spektrometrie s elektrosprejovou ionizací MeSH
- inhibiční koncentrace 50 MeSH
- inhibitory enzymů chemie izolace a purifikace farmakologie MeSH
- kinetika MeSH
- lidský herpesvirus 2 účinky léků MeSH
- polyfenoly chemie izolace a purifikace farmakologie MeSH
- preklinické hodnocení léčiv MeSH
- rostlinné extrakty chemie izolace a purifikace farmakologie MeSH
- ureasa antagonisté a inhibitory chemie MeSH
- Vero buňky MeSH
- vysokoúčinná kapalinová chromatografie MeSH
- zvířata MeSH
- Check Tag
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
Haloalkane dehalogenases (HLDs) have recently been discovered in a number of bacteria, including symbionts and pathogens of both plants and humans. However, the biological roles of HLDs in these organisms are unclear. The development of efficient HLD inhibitors serving as molecular probes to explore their function would represent an important step toward a better understanding of these interesting enzymes. Here we report the identification of inhibitors for this enzyme family using two different approaches. The first builds on the structures of the enzymes' known substrates and led to the discovery of less potent nonspecific HLD inhibitors. The second approach involved the virtual screening of 150,000 potential inhibitors against the crystal structure of an HLD from the human pathogen Mycobacterium tuberculosis H37Rv. The best inhibitor exhibited high specificity for the target structure, with an inhibition constant of 3 μM and a molecular architecture that clearly differs from those of all known HLD substrates. The new inhibitors will be used to study the natural functions of HLDs in bacteria, to probe their mechanisms, and to achieve their stabilization.
- MeSH
- hydrolasy antagonisté a inhibitory chemie MeSH
- inhibitory enzymů chemie izolace a purifikace metabolismus MeSH
- konformace proteinů MeSH
- molekulární modely MeSH
- molekulární struktura MeSH
- Mycobacterium tuberculosis enzymologie MeSH
- simulace molekulární dynamiky MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
Two new isoquinoline alkaloids, named fumaranine (2) and fumarostrejdine (10), along with 18 known alkaloids were isolated from aerial parts of Fumaria officinalis. The structures of the isolated compounds were elucidated on the basis of spectroscopic analyses and by comparison with literature data. The absolute configuration of the new compound 2 was determined by comparing its circular dichroism spectra with those of known analogs. Compounds isolated in sufficient amounts were evaluated for their acetylcholinesterase, butyrylcholinesterase, prolyl oligopeptidase (POP), and glycogen synthase kinase-3β inhibitory activities. Parfumidine (8) and sinactine (15) exhibited potent POP inhibition activities (IC50 99±5 and 53±2 μM, resp.).
- MeSH
- acetylcholinesterasa metabolismus MeSH
- alkaloidy chemie izolace a purifikace farmakologie MeSH
- Alzheimerova nemoc farmakoterapie enzymologie MeSH
- butyrylcholinesterasa metabolismus MeSH
- Fumaria chemie MeSH
- inhibitory enzymů chemie izolace a purifikace farmakologie MeSH
- isochinoliny chemie izolace a purifikace farmakologie MeSH
- kinasa 3 glykogensynthasy antagonisté a inhibitory metabolismus MeSH
- lidé MeSH
- molekulární struktura MeSH
- serinové endopeptidasy metabolismus MeSH
- vztah mezi dávkou a účinkem léčiva MeSH
- vztahy mezi strukturou a aktivitou MeSH
- Check Tag
- lidé MeSH
- Publikační typ
- časopisecké články MeSH
Cyclopentenediones (CPDs) are secondary metabolites of higher plants, fungi, algae, cyanobacteria and bacteria. A common denominator of CPDs is the cyclopent-4-ene-1,3-dione skeleton (1), which is modified by several functional groups. The heterogeneity of these substitutions is reflected in around one hundred CPDs reported to date. Most of the derivatives were isolated primarily from plant sources. Synthetic analogues were then prepared with new biological activities and more interesting pharmacological potential. Antifungal substances called coruscanones (2, 3) are the most studied of the CPDs. Other intensely investigated CPDs include lucidone (4), linderone (5), asterredione (6), involutone (7), nostotrebin 6 (8), TX-1123 (9), G2201-C (10), madindolines (11, 12) and many others. In addition to antibacterial and antifungal effects, a broad spectrum of biological activities for CPDs has been reported in the past two decades, especially anti-inflammatory, cytostatic and specific enzyme inhibitory activities. The CPD skeleton has been identified in a number of substances isolated from the plant kingdom; hence, CPDs can be referred to as a new group of natural bioactive substances. The main goal of this review is to define CPDs with respect to basic chemistry, isolation, synthetic approaches and description of their biological effects. Special attention is given to a detailed view into biological activities of CPDs in vitro and their phamacological potential.
- MeSH
- antiflogistika chemie izolace a purifikace farmakologie MeSH
- antiinfekční látky chemie izolace a purifikace farmakologie MeSH
- apoptóza účinky léků MeSH
- Candida albicans účinky léků MeSH
- cyklopentany chemická syntéza chemie farmakologie MeSH
- cytostatické látky chemie izolace a purifikace toxicita MeSH
- gramnegativní bakterie účinky léků MeSH
- grampozitivní bakterie účinky léků MeSH
- houby chemie metabolismus MeSH
- inhibitory enzymů chemie izolace a purifikace MeSH
- rostliny chemie metabolismus MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- přehledy MeSH
- Klíčová slova
- Inosin 5-mono-fosfát dehydrogenáza, inkluze, ultrastruktura,
- MeSH
- elektronová mikroskopie využití MeSH
- inhibitory enzymů * izolace a purifikace terapeutické užití MeSH
- konformace proteinů * účinky léků MeSH
- lidé MeSH
- nukleotidy biosyntéza MeSH
- prospektivní studie MeSH
- zmrazování MeSH
- Check Tag
- lidé MeSH