16228380 OR Electron microscopy in structural studies of Photosystem II Dotaz Zobrazit nápovědu
Ultraviolet (UV) radiation has become an important stress factor in polar regions due to anthropogenically induced ozone depletion. Although extensive research has been conducted on adaptations of polar organisms to this stress factor, few studies have focused on semi-terrestrial algae so far, in spite of their apparent vulnerability. This study investigates the effect of UV on two semi-terrestrial arctic strains (B, G) and one Antarctic strain (E) of the green alga Zygnema, isolated from Arctic and Antarctic habitats. Isolates of Zygnema were exposed to experimentally enhanced UV A and B (predominant UV A) to photosynthetic active radiation (PAR) ratio. The pigment content, photosynthetic performance and ultrastructure were studied by means of high-performance liquid chromatography (HPLC), chlorophyll a fluorescence and transmission electron microscopy (TEM). In addition, phylogenetic relationships of the investigated strains were characterised using rbcL sequences, which determined that the Antarctic isolate (E) and one of the Arctic isolates (B) were closely related, while G is a distinct lineage. The production of protective phenolic compounds was confirmed in all of the tested strains by HPLC analysis for both controls and UV-exposed samples. Moreover, in strain E, the content of phenolics increased significantly (p = 0.001) after UV treatment. Simultaneously, the maximum quantum yield of photosystem II photochemistry significantly decreased in UV-exposed strains E and G (p < 0.001), showing a clear stress response. The phenolics were most probably stored at the cell periphery in vacuoles and cytoplasmic bodies that appear as electron-dense particles when observed by TEM after high-pressure freeze fixation. While two strains reacted moderately on UV exposure in their ultrastructure, in strain G, damage was found in chloroplasts and mitochondria. Plastidal pigments and xanthophyll cycle pigments were investigated by HPLC analysis; UV A- and UV B-exposed samples had a higher deepoxidation state as controls, particularly evident in strain B. The results indicate that phenolics are involved in UV protection of Zygnema and also revealed different responses to UV stress across the three strains, suggesting that other protection mechanisms may be involved in these organisms.
- MeSH
- chlorofyl analýza MeSH
- DNA rostlinná genetika MeSH
- fenoly analýza MeSH
- fotosyntéza účinky záření MeSH
- fotosystém II - proteinový komplex účinky záření MeSH
- fylogeneze MeSH
- Streptophyta chemie účinky záření ultrastruktura MeSH
- transmisní elektronová mikroskopie MeSH
- ultrafialové záření * MeSH
- vysokoúčinná kapalinová chromatografie MeSH
- xanthofyly analýza MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- Research Support, U.S. Gov't, Non-P.H.S. MeSH
- Geografické názvy
- Antarktida MeSH
- Arktida MeSH
Photosynthesis in plants and algae relies on the coordinated function of photosystems (PS) I and II. Their efficiency is augmented by finely-tuned light-harvesting proteins (Lhcs) connected to them. The most recent Lhcs (in evolutionary terms), Lhcb6 and Lhcb3, evolved during the transition of plants from water to land and have so far been considered to be an essential characteristic of land plants. We used single particle electron microscopy and sequence analysis to study architecture and composition of PSII supercomplex from Norway spruce and related species. We have found that there are major land plant families that lack functional lhcb6 and lhcb3 genes, which notably changes the organization of PSII supercomplexes. The Lhcb6 and Lhcb3 proteins have been lost in the gymnosperm genera Picea and Pinus (family Pinaceae) and Gnetum (Gnetales). We also revealed that the absence of these proteins in Norway spruce modifies the PSII supercomplex in such a way that it resembles its counterpart in the alga Chlamydomonas reinhardtii, an evolutionarily older organism. Our results break a deep-rooted concept of Lhcb6 and Lhcb3 proteins being the essential characteristic of land plants, and beg the question of what the evolutionary benefit of their loss could be.
- MeSH
- biologická evoluce * MeSH
- fotosystém II - proteinový komplex metabolismus MeSH
- fylogeneze MeSH
- podjednotky proteinů chemie metabolismus MeSH
- rostlinné geny MeSH
- rostlinné proteiny metabolismus MeSH
- sekvenční homologie aminokyselin MeSH
- světlosběrné proteinové komplexy metabolismus ultrastruktura MeSH
- vyšší rostliny metabolismus MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH