BACKGROUND: Somatic EGFR mutations define a subset of non-small cell lung cancers (NSCLC) that have clinical impact on NSCLC risk and outcome. However, EGFR-mutation-status is often missing in epidemiologic datasets. We developed and tested pragmatic approaches to account for EGFR-mutation-status based on variables commonly included in epidemiologic datasets and evaluated the clinical utility of these approaches. METHODS: Through analysis of the International Lung Cancer Consortium (ILCCO) epidemiologic datasets, we developed a regression model for EGFR-status; we then applied a clinical-restriction approach using the optimal cut-point, and a second epidemiologic, multiple imputation approach to ILCCO survival analyses that did and did not account for EGFR-status. RESULTS: Of 35,356 ILCCO patients with NSCLC, EGFR-mutation-status was available in 4,231 patients. A model regressing known EGFR-mutation-status on clinical and demographic variables achieved a concordance index of 0.75 (95% CI, 0.74-0.77) in the training and 0.77 (95% CI, 0.74-0.79) in the testing dataset. At an optimal cut-point of probability-score = 0.335, sensitivity = 69% and specificity = 72.5% for determining EGFR-wildtype status. In both restriction-based and imputation-based regression analyses of the individual roles of BMI on overall survival of patients with NSCLC, similar results were observed between overall and EGFR-mutation-negative cohort analyses of patients of all ancestries. However, our approach identified some differences: EGFR-mutated Asian patients did not incur a survival benefit from being obese, as observed in EGFR-wildtype Asian patients. CONCLUSIONS: We introduce a pragmatic method to evaluate the potential impact of EGFR-status on epidemiological analyses of NSCLC. IMPACT: The proposed method is generalizable in the common occurrence in which EGFR-status data are missing.
- MeSH
- analýza přežití MeSH
- erbB receptory genetika MeSH
- lidé MeSH
- mutace MeSH
- nádory plic * epidemiologie genetika MeSH
- nemalobuněčný karcinom plic * epidemiologie genetika MeSH
- Check Tag
- lidé MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- Research Support, N.I.H., Extramural MeSH
- Názvy látek
- EGFR protein, human MeSH Prohlížeč
- erbB receptory MeSH
BACKGROUND: Cellular senescence and the senescence-associated secretory phenotype (SASP) may contribute to the development of radiation therapy-associated side effects in the lung and blood vessels by promoting chronic inflammation. In the brain, inflammation contributes to the development of neurologic disease, including Alzheimer's disease. In this study, we investigated the roles of cellular senescence and Δ133p53, an inhibitory isoform of p53, in radiation-induced brain injury. METHODS: Senescent cell types in irradiated human brain were identified with immunohistochemical labeling of senescence-associated proteins p16INK4A and heterochromatin protein Hp1γ in 13 patient cases, including 7 irradiated samples. To investigate the impact of radiation on astrocytes specifically, primary human astrocytes were irradiated and examined for expression of Δ133p53 and induction of SASP. Lentiviral expression of ∆133p53 was performed to investigate its role in regulating radiation-induced cellular senescence and astrocyte-mediated neuroinflammation. RESULTS: Astrocytes expressing p16INK4A and Hp1γ were identified in all irradiated tissues, were increased in number in irradiated compared with untreated cancer patient tissues, and had higher labeling intensity in irradiated tissues compared with age-matched controls. Human astrocytes irradiated in vitro also experience induction of cellular senescence, have diminished Δ133p53, and adopt a neurotoxic phenotype as demonstrated by increased senescence-associated beta-galactosidase activity, p16INK4A, and interleukin (IL)-6. In human astrocytes, Δ133p53 inhibits radiation-induced senescence, promotes DNA double-strand break repair, and prevents astrocyte-mediated neuroinflammation and neurotoxicity. CONCLUSIONS: Restoring expression of the endogenous p53 isoform, ∆133p53, protects astrocytes from radiation-induced senescence, promotes DNA repair, and inhibits astrocyte-mediated neuroinflammation.
- Klíčová slova
- IL-6, astrocytes, p53 isoform, radiation-induced brain injury, senescence,
- MeSH
- astrocyty metabolismus účinky záření MeSH
- kraniální ozáření škodlivé účinky MeSH
- kultivované buňky MeSH
- lidé MeSH
- nádorový supresorový protein p53 metabolismus MeSH
- nádory mozku radioterapie MeSH
- protein - isoformy metabolismus MeSH
- radiační poranění metabolismus MeSH
- stárnutí buněk účinky záření MeSH
- Check Tag
- lidé MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- Research Support, N.I.H., Extramural MeSH
- Názvy látek
- nádorový supresorový protein p53 MeSH
- protein - isoformy MeSH
- TP53 protein, human MeSH Prohlížeč
Cellular senescence is a hallmark of normal aging and aging-related syndromes, including the premature aging disorder Hutchinson-Gilford Progeria Syndrome (HGPS), a rare genetic disorder caused by a single mutation in the LMNA gene that results in the constitutive expression of a truncated splicing mutant of lamin A known as progerin. Progerin accumulation leads to increased cellular stresses including unrepaired DNA damage, activation of the p53 signaling pathway and accelerated senescence. We previously established that the p53 isoforms ∆133p53 and p53β regulate senescence in normal human cells. However, their role in premature aging is unknown. Here we report that p53 isoforms are expressed in primary fibroblasts derived from HGPS patients, are associated with their accelerated senescence and that their manipulation can restore the replication capacity of HGPS fibroblasts. We found that in near-senescent HGPS fibroblasts, which exhibit low levels of ∆133p53 and high levels of p53β, restoration of Δ133p53 expression was sufficient to extend replicative lifespan and delay senescence, despite progerin levels and abnormal nuclear morphology remaining unchanged. Conversely, Δ133p53 depletion or p53β overexpression accelerated the onset of senescence in otherwise proliferative HGPS fibroblasts. Our data indicate that Δ133p53 exerts its role by modulating full-length p53 (FLp53) signaling to extend the replicative lifespan and promotes the repair of spontaneous progerin-induced DNA double-strand breaks (DSBs). We showed that Δ133p53 dominant-negative inhibition of FLp53 occurs directly at the p21/CDKN1A and miR-34a promoters, two p53 senescence-associated genes. In addition, Δ133p53 expression increased the expression of DNA repair RAD51, likely through upregulation of E2F1, a transcription factor that activates RAD51, to promote repair of DSBs. In summary, our data indicate that Δ133p53 modulates p53 signaling to repress progerin-induced early onset of senescence in HGPS cells. Therefore, restoration of ∆133p53 expression may be a novel therapeutic strategy to treat aging-associated phenotypes of HGPS in vivo.
- MeSH
- časové faktory MeSH
- fibroblasty patologie fyziologie MeSH
- kultivované buňky MeSH
- lidé MeSH
- nádorový supresorový protein p53 genetika fyziologie MeSH
- poškození DNA genetika MeSH
- předčasné stárnutí genetika patologie MeSH
- progerie genetika patologie MeSH
- protein - isoformy fyziologie MeSH
- stárnutí buněk genetika MeSH
- Check Tag
- lidé MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- Research Support, N.I.H., Extramural MeSH
- Názvy látek
- nádorový supresorový protein p53 MeSH
- protein - isoformy MeSH
- TP53 protein, human MeSH Prohlížeč
It is not clear whether alcohol consumption is associated with lung cancer risk. The relationship is likely confounded by smoking, complicating the interpretation of previous studies. We examined the association of alcohol consumption and lung cancer risk in a large pooled international sample, minimizing potential confounding of tobacco consumption by restricting analyses to never smokers. Our study included 22 case-control and cohort studies with a total of 2548 never-smoking lung cancer patients and 9362 never-smoking controls from North America, Europe and Asia within the International Lung Cancer Consortium (ILCCO) and SYNERGY Consortium. Alcohol consumption was categorized into amounts consumed (grams per day) and also modelled as a continuous variable using restricted cubic splines for potential non-linearity. Analyses by histologic sub-type were included. Associations by type of alcohol consumed (wine, beer and liquor) were also investigated. Alcohol consumption was inversely associated with lung cancer risk with evidence most strongly supporting lower risk for light and moderate drinkers relative to non-drinkers (>0-4.9 g per day: OR = 0.80, 95% CI = 0.70-0.90; 5-9.9 g per day: OR = 0.82, 95% CI = 0.69-0.99; 10-19.9 g per day: OR = 0.79, 95% CI = 0.65-0.96). Inverse associations were found for consumption of wine and liquor, but not beer. The results indicate that alcohol consumption is inversely associated with lung cancer risk, particularly among subjects with low to moderate consumption levels, and among wine and liquor drinkers, but not beer drinkers. Although our results should have no relevant bias from the confounding effect of smoking we cannot preclude that confounding by other factors contributed to the observed associations. Confounding in relation to the non-drinker reference category may be of particular importance.
- Klíčová slova
- alcohol, beer, liquor, lung cancer, wine,
- MeSH
- alkoholické nápoje škodlivé účinky MeSH
- kohortové studie MeSH
- kouření škodlivé účinky MeSH
- lidé středního věku MeSH
- lidé MeSH
- nádory plic epidemiologie patologie MeSH
- pití alkoholu škodlivé účinky MeSH
- rizikové faktory MeSH
- senioři MeSH
- studie případů a kontrol MeSH
- Check Tag
- lidé středního věku MeSH
- lidé MeSH
- mužské pohlaví MeSH
- senioři MeSH
- ženské pohlaví MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- Research Support, N.I.H., Extramural MeSH
- Research Support, N.I.H., Intramural MeSH
- Geografické názvy
- Asie epidemiologie MeSH
- Evropa epidemiologie MeSH
- Severní Amerika epidemiologie MeSH
Δ133p53α, a p53 isoform that can inhibit full-length p53, is downregulated at replicative senescence in a manner independent of mRNA regulation and proteasome-mediated degradation. Here we demonstrate that, unlike full-length p53, Δ133p53α is degraded by autophagy during replicative senescence. Pharmacological inhibition of autophagy restores Δ133p53α expression levels in replicatively senescent fibroblasts, without affecting full-length p53. The siRNA-mediated knockdown of pro-autophagic proteins (ATG5, ATG7 and Beclin-1) also restores Δ133p53α expression. The chaperone-associated E3 ubiquitin ligase STUB1, which is known to regulate autophagy, interacts with Δ133p53α and is downregulated at replicative senescence. The siRNA knockdown of STUB1 in proliferating, early-passage fibroblasts induces the autophagic degradation of Δ133p53α and thereby induces senescence. Upon replicative senescence or STUB1 knockdown, Δ133p53α is recruited to autophagosomes, consistent with its autophagic degradation. This study reveals that STUB1 is an endogenous regulator of Δ133p53α degradation and senescence, and identifies a p53 isoform-specific protein turnover mechanism that orchestrates p53-mediated senescence.
- MeSH
- adaptorové proteiny signální transdukční genetika metabolismus MeSH
- androstadieny farmakologie MeSH
- autofagie účinky léků fyziologie MeSH
- beclin 1 MeSH
- cykloheximid farmakologie MeSH
- fibroblasty účinky léků metabolismus MeSH
- genový knockdown MeSH
- kultivované buňky MeSH
- lidé MeSH
- malá interferující RNA MeSH
- membránové proteiny genetika metabolismus MeSH
- nádorový supresorový protein p53 genetika metabolismus MeSH
- protein - isoformy metabolismus MeSH
- proteiny asociované s mikrotubuly genetika metabolismus MeSH
- proteiny regulující apoptózu genetika metabolismus MeSH
- sekvestosom 1 MeSH
- stárnutí buněk fyziologie MeSH
- ubikvitinligasy genetika metabolismus MeSH
- wortmannin MeSH
- Check Tag
- lidé MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- Research Support, N.I.H., Intramural MeSH
- Názvy látek
- adaptorové proteiny signální transdukční MeSH
- androstadieny MeSH
- beclin 1 MeSH
- BECN1 protein, human MeSH Prohlížeč
- cykloheximid MeSH
- malá interferující RNA MeSH
- MAP1LC3B protein, human MeSH Prohlížeč
- membránové proteiny MeSH
- nádorový supresorový protein p53 MeSH
- protein - isoformy MeSH
- proteiny asociované s mikrotubuly MeSH
- proteiny regulující apoptózu MeSH
- sekvestosom 1 MeSH
- SQSTM1 protein, human MeSH Prohlížeč
- STUB1 protein, human MeSH Prohlížeč
- TP53 protein, human MeSH Prohlížeč
- ubikvitinligasy MeSH
- wortmannin MeSH