INTRODUCTION: Pigmented hypertrichosis with insulin-dependent diabetes mellitus (PHID) syndrome is a rare disease, and part of the cluster histiocytosis-lymphadenopathy plus syndrome (H syndrome), which is associated with mutations in the SLC29A3 gene. Patients with PHID show clinical features of H syndrome but also have insulin-dependent diabetes mellitus. The PHID has previously been described as predominantly in absence of pancreatic autoantibodies. Case Series Presentation: Through an open call in two international diabetes registers, clinical and genetic characteristics of 7 PHID patients in 6 treatment centres were collected after informed consent. All of them had consanguinity in their families, and their origins were located in North-African and Middle Eastern regions. Four out of 7 patients had at least one positive pancreatic autoantibody. DISCUSSION AND CONCLUSION: Our case series reveals that PHID exhibits a wide range of clinical symptoms and signs. When consanguinity is present in a patient with newly diagnosed diabetes, and/or if other atypical symptoms such as dysmorphic features, skin lesions, haematological abnormalities, and developmental delay are present, threshold for genetic analysis should be low. Moreover, the presence of autoantibodies should not withhold genetic testing as our case series contradicts the previous observation of predominant autoantibody absence in PHID.
- Klíčová slova
- Autoantibodies, Diabetes, H syndrome, PHID syndrome, SLC29A3,
- MeSH
- autoprotilátky krev MeSH
- diabetes mellitus 1. typu * genetika patologie komplikace MeSH
- hypertrichóza * genetika patologie komplikace MeSH
- lidé MeSH
- mutace MeSH
- pokrevní příbuzenství MeSH
- proteiny přenášející nukleosidy * genetika MeSH
- Check Tag
- lidé MeSH
- Publikační typ
- časopisecké články MeSH
- kazuistiky MeSH
- Názvy látek
- autoprotilátky MeSH
- proteiny přenášející nukleosidy * MeSH
- SLC29A3 protein, human MeSH Prohlížeč
The quality and relevance of nanosafety studies constitute major challenges to ensure their key role as a supporting tool in sustainable innovation, and subsequent competitive economic advantage. However, the number of apparently contradictory and inconclusive research results has increased in the past few years, indicating the need to introduce harmonized protocols and good practices in the nanosafety research community. Therefore, we aimed to evaluate if best-practice training and inter-laboratory comparison (ILC) of performance of the 3-(4,5-dimethylthiazol-2-yl)-5-(3-carboxymethoxyphenyl)-2-(4-sulfophenyl)-2H-tetrazolium (MTS) assay for the cytotoxicity assessment of nanomaterials among 15 European laboratories can improve quality in nanosafety testing. We used two well-described model nanoparticles, 40-nm carboxylated polystyrene (PS-COOH) and 50-nm amino-modified polystyrene (PS-NH2). We followed a tiered approach using well-developed standard operating procedures (SOPs) and sharing the same cells, serum and nanoparticles. We started with determination of the cell growth rate (tier 1), followed by a method transfer phase, in which all laboratories performed the first ILC on the MTS assay (tier 2). Based on the outcome of tier 2 and a survey of laboratory practices, specific training was organized, and the MTS assay SOP was refined. This led to largely improved intra- and inter-laboratory reproducibility in tier 3. In addition, we confirmed that PS-COOH and PS-NH2 are suitable negative and positive control nanoparticles, respectively, to evaluate impact of nanomaterials on cell viability using the MTS assay. Overall, we have demonstrated that the tiered process followed here, with the use of SOPs and representative control nanomaterials, is necessary and makes it possible to achieve good inter-laboratory reproducibility, and therefore high-quality nanotoxicological data.
- Klíčová slova
- best practice, cytotoxicity, inter-laboratory comparison, nanosafety, training,
- Publikační typ
- časopisecké články MeSH