Menopause brings about profound physiological changes, including the acceleration of insulin resistance and other abnormalities, in which adipose tissue can play a significant role. This study analyzed the effect of ovariectomy and estradiol substitution on the metabolic parameters and transcriptomic profile of adipose tissue in prediabetic females of hereditary hypertriglyceridemic rats (HHTgs). The HHTgs underwent ovariectomy (OVX) or sham surgery (SHAM), and half of the OVX group received 17β-estradiol (OVX+E2) post-surgery. Ovariectomy resulted in weight gain, an impaired glucose tolerance, ectopic triglyceride (TG) deposition, and insulin resistance exemplified by impaired glycogenesis and lipogenesis. Estradiol alleviated some of the disorders associated with ovariectomy; in particular, it improved insulin sensitivity and reduced TG deposition. A transcriptomic analysis of perimetrial adipose tissue revealed 809 differentially expressed transcripts in the OVX vs. SHAM groups, mostly pertaining to the regulation of lipid and glucose metabolism, and oxidative stress. Estradiol substitution affected 1049 transcripts with overrepresentation in the signaling pathways of lipid metabolism. The principal component and hierarchical clustering analyses of transcriptome shifts corroborated the metabolic data, showing a closer resemblance between the OVX+E2 and SHAM groups compared to the OVX group. Changes in the adipose tissue transcriptome may contribute to metabolic abnormalities accompanying ovariectomy-induced menopause in HHTg females. Estradiol substitution may partially mitigate some of these disorders.
- Klíčová slova
- estradiol substitution, hereditary hypertriglyceridemic rat, insulin sensitivity, ovariectomy, perimetrial adipose tissue, transcriptomics,
- Publikační typ
- časopisecké články MeSH
Several corresponding regions of human and mammalian genomes have been shown to affect sensitivity to the manifestation of metabolic syndrome via nutrigenetic interactions. In this study, we assessed the effect of sucrose administration in a newly established congenic strain BN.SHR20, in which a limited segment of rat chromosome 20 from a metabolic syndrome model, spontaneously hypertensive rat (SHR), was introgressed into Brown Norway (BN) genomic background. We mapped the extent of the differential segment and compared the genomic sequences of BN vs. SHR within the segment in silico. The differential segment of SHR origin in BN.SHR20 spans about 9 Mb of the telomeric portion of the short arm of chromosome 20. We identified non-synonymous mutations e.g., in ApoM, Notch4, Slc39a7, Smim29 genes and other variations in or near genes associated with metabolic syndrome in human genome-wide association studies. Male rats of BN and BN.SHR20 strains were fed a standard diet for 18 weeks (control groups) or 16 weeks of standard diet followed by 14 days of high-sucrose diet (HSD). We assessed the morphometric and metabolic profiles of all groups. Adiposity significantly increased only in BN.SHR20 after HSD. Fasting glycemia and the glucose levels during the oral glucose tolerance test were higher in BN.SHR20 than in BN groups, while insulin levels were comparable. The fasting levels of triacylglycerols were the highest in sucrose-fed BN.SHR20, both compared to the sucrose-fed BN and the control BN.SHR20. The non-esterified fatty acids and total cholesterol concentrations were higher in BN.SHR20 compared to their respective BN groups, and the HSD elicited an increase in non-esterified fatty acids only in BN.SHR20. In a new genetically defined model, we have isolated a limited genomic region involved in nutrigenetic sensitization to sucrose-induced metabolic disturbances.
- Klíčová slova
- animal model, congenic rat, metabolic syndrome, nutrigenetics,
- MeSH
- apolipoproteiny M genetika MeSH
- celogenomová asociační studie MeSH
- hypertenze * metabolismus MeSH
- krysa rodu Rattus MeSH
- lidé MeSH
- lidské chromozomy, pár 20 metabolismus MeSH
- mastné kyseliny MeSH
- metabolický syndrom * genetika metabolismus MeSH
- nutrigenomika MeSH
- omezení příjmu potravy MeSH
- potkani inbrední BN MeSH
- potkani inbrední SHR MeSH
- proteiny přenášející kationty * genetika MeSH
- sacharosa škodlivé účinky MeSH
- savci genetika MeSH
- zvířata MeSH
- Check Tag
- krysa rodu Rattus MeSH
- lidé MeSH
- mužské pohlaví MeSH
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- Názvy látek
- apolipoproteiny M MeSH
- Apom protein, rat MeSH Prohlížeč
- mastné kyseliny MeSH
- proteiny přenášející kationty * MeSH
- sacharosa MeSH
- SLC39A7 protein, human MeSH Prohlížeč
Complex metabolic conditions such as type 2 diabetes and obesity result from the interaction of numerous genetic and environmental factors. While the family of Nme proteins has been connected so far mostly to development, proliferation, or ciliary functions, several lines of evidence from human and experimental studies point to the potential involvement of one of its members, NME7 (non-metastatic cells 7, nucleoside diphosphate kinase 7) in carbohydrate and lipid metabolism. As a complete lack of Nme7 is semilethal in rats, we compared morphometric, metabolic, and transcriptomic profiles of standard diet-fed heterozygous Nme7+/- on male rats vs. their wild-type Nme7+/+ controls. Nme7+/- animals showed increased body weight, adiposity, higher insulin levels together with decreased glucose tolerance. Moreover, they displayed pancreatic islet fibrosis and kidney tubular damage. Despite no signs of overt liver steatosis or dyslipidemia, we found significant changes in the hepatic transcriptome of Nme7+/- male rats with a concerted increase of expression of lipogenic enzymes including Scd1, Fads1, Dhcr7 and a decrease of Cyp7b1 and Nme7. Network analyses suggested possible links between Nme7 and the activation of Srebf1 and Srebf2 upstream regulators. These results further support the implication of NME7 in the pathogenesis of glucose intolerance and adiposity.
- Klíčová slova
- animal models, metabolic syndrome, pancreatic fibrosis,
- MeSH
- adipozita genetika MeSH
- diabetes mellitus 2. typu metabolismus MeSH
- dyslipidemie genetika MeSH
- glukosa metabolismus MeSH
- játra metabolismus MeSH
- krysa rodu Rattus MeSH
- lipogeneze genetika MeSH
- metabolismus lipidů fyziologie MeSH
- nukleosiddifosfátkinasa genetika metabolismus MeSH
- obezita metabolismus MeSH
- porucha glukózové tolerance genetika metabolismus MeSH
- potkani Sprague-Dawley MeSH
- transkriptom MeSH
- zvířata MeSH
- Check Tag
- krysa rodu Rattus MeSH
- mužské pohlaví MeSH
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- Názvy látek
- glukosa MeSH
- NME7 protein, human MeSH Prohlížeč
- nukleosiddifosfátkinasa MeSH
NME7 (non-metastatic cells 7, nucleoside diphosphate kinase 7) is a member of a gene family with a profound effect on health/disease status. NME7 is an established member of the ciliome and contributes to the regulation of the microtubule-organizing center. We aimed to create a rat model to further investigate the phenotypic consequences of Nme7 gene deletion. The CRISPR/Cas9 nuclease system was used for the generation of Sprague Dawley Nme7 knock-out rats targeting the exon 4 of the Nme7 gene. We found the homozygous Nme7 gene deletion to be semi-lethal, as the majority of SDNme7-/- pups died prior to weaning. The most prominent phenotypes in surviving SDNme7-/- animals were hydrocephalus, situs inversus totalis, postnatal growth retardation, and sterility of both sexes. Thinning of the neocortex was histologically evident at 13.5 day of gestation, dilation of all ventricles was detected at birth, and an external sign of hydrocephalus, i.e., doming of the skull, was usually apparent at 2 weeks of age. Heterozygous SDNme7+/- rats developed normally; we did not detect any symptoms of primary ciliary dyskinesia. The transcriptomic profile of liver and lungs corroborated the histological findings, revealing defects in cell function and viability. In summary, the knock-out of the rat Nme7 gene resulted in a range of conditions consistent with the presentation of primary ciliary dyskinesia, supporting the previously implicated role of the centrosomally located Nme7 gene in ciliogenesis and control of ciliary transport.
- Klíčová slova
- Nme7, cilia, hydrocephalus, infertility, knock-out rat,
- MeSH
- cilie metabolismus ultrastruktura MeSH
- fenotyp MeSH
- genetická predispozice k nemoci * MeSH
- genetické asociační studie MeSH
- genotyp MeSH
- genový knockdown MeSH
- imunohistochemie MeSH
- krysa rodu Rattus MeSH
- letální geny * MeSH
- modely nemocí na zvířatech MeSH
- nukleosiddifosfátkinasa nedostatek genetika metabolismus MeSH
- poruchy ciliární motility diagnóza genetika MeSH
- potkani Sprague-Dawley MeSH
- potkani transgenní MeSH
- regulace genové exprese MeSH
- rentgenová mikrotomografie MeSH
- stanovení celkové genové exprese MeSH
- transkriptom MeSH
- zvířata MeSH
- Check Tag
- krysa rodu Rattus MeSH
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- Názvy látek
- nukleosiddifosfátkinasa MeSH
Overnutrition in pregnancy and lactation affects fetal and early postnatal development, which can result in metabolic disorders in adulthood. We tested a hypothesis that variation of the Zbtb16 gene, a significant energy metabolism regulator, modulates the effect of maternal high-sucrose diet (HSD) on metabolic and transcriptomic profiles of the offspring. We used the spontaneously hypertensive rat (SHR) strain and a minimal congenic rat strain SHR-Zbtb16, carrying the Zbtb16 gene allele originating from the PD/Cub rat, a metabolic syndrome model. Sixteen-week-old SHR and SHR-Zbtb16 rat dams were fed either standard diet (control groups) or a high-sucrose diet (HSD, 70% calories as sucrose) during pregnancy and 4 weeks of lactation. In dams of both strains, we observed an HSD-induced increase of cholesterol and triacylglycerol concentrations in VLDL particles and a decrease of cholesterol and triacylglycerols content in medium to very small LDL particles. In male offspring, exposure to maternal HSD substantially increased brown fat weight in both strains, decreased triglycerides in LDL particles, and impaired glucose tolerance exclusively in SHR. The transcriptome assessment revealed networks of transcripts reflecting the shifts induced by maternal HSD with major nodes including mir-126, Hsd11b1 in the brown adipose tissue, Pcsk9, Nr0b2 in the liver and Hsd11b1, Slc2a4 in white adipose tissue. In summary, maternal HSD feeding during pregnancy and lactation affected brown fat deposition and lipid metabolism in adult male offspring and induced major transcriptome shifts in liver, white, and brown adipose tissues. The Zbtb16 variation present in the SHR-Zbtb16 led to several strain-specific effects of the maternal HSD, particularly the transcriptomic profile shifts of the adult male offspring.
- Klíčová slova
- DOHAD, Zbtb16, high-sucrose diet, maternal nutrition, transcriptomics,
- Publikační typ
- časopisecké články MeSH
Excessive methylglyoxal (MG) production contributes to metabolic and vascular changes by increasing inflammatory processes, disturbing regulatory mechanisms and exacerbating tissue dysfunction. MG accumulation in adipocytes leads to structural and functional changes. We used transcriptome analysis to investigate the effect of MG on metabolic changes in the visceral adipose tissue of hereditary hypetriglyceridaemic rats, a non-obese model of metabolic syndrome. Compared to controls, 4-week intragastric MG administration impaired glucose tolerance (p < 0.05) and increased glycaemia (p < 0.01) and serum levels of MCP-1 and TNFα (p < 0.05), but had no effect on serum adiponectin or leptin. Adipose tissue insulin sensitivity and lipolysis were impaired (p < 0.05) in MG-treated rats. In addition, MG reduced the expression of transcription factor Nrf2 (p < 0.01), which controls antioxidant and lipogenic genes. Increased expression of Mcp-1 and TNFα (p < 0.05) together with activation of the SAPK/JNK signaling pathway can promote chronic inflammation in adipose tissue. Transcriptome network analysis revealed the over-representation of genes involved in insulin signaling (Irs1, Igf2, Ide), lipid metabolism (Nr1d1, Lpin1, Lrpap1) and angiogenesis (Dusp10, Tp53inp1).
- Klíčová slova
- adipose tissue, insulin resistance, methylglyoxal,
- Publikační typ
- časopisecké články MeSH
Early life exposure to certain environmental stimuli is related to the development of alternative phenotypes in mammals. A number of these phenotypes are related to an increased risk of disease later in life, creating a massive healthcare burden. With recent focus on the determination of underlying causes of common metabolic disorders, parental nutrition is of great interest, mainly due to a global shift towards a Western-type diet. Recent studies focusing on the increase of food or macronutrient intake don't always consider the source of these nutrients as an important factor. In our study, we concentrate on the effects of high-sucrose diet, which provides carbohydrates in form of sucrose as opposed to starch in standard diet, fed in pregnancy and lactation in two subsequent generations of spontaneously hypertensive rats (SHR) and congenic SHR-Zbtb16 rats. Maternal sucrose intake increased fasting glycaemia in SHR female offspring in adulthood and increased their chow consumption in gravidity. High-sucrose diet fed to the maternal grandmother increased brown fat weight and HDL cholesterol levels in adult male offspring of both strains, i.e., the grandsons. Fasting glycaemia was however decreased only in SHR offspring. In conclusion, we show the second-generation effects of maternal exposition to a high-sucrose diet, some modulated to a certain extent by variation in the Zbtb16 gene.
- Klíčová slova
- DOHAD, HDL cholesterol, brown fat, high sucrose diet, rat model,
- MeSH
- dieta * MeSH
- energetický metabolismus * MeSH
- fyziologie výživy v mateřství * MeSH
- glukózový toleranční test MeSH
- konzumní sacharóza metabolismus MeSH
- krevní glukóza MeSH
- krysa rodu Rattus MeSH
- lidé MeSH
- lipidy krev MeSH
- metabolické nemoci etiologie metabolismus MeSH
- metabolismus lipidů MeSH
- náchylnost k nemoci MeSH
- těhotenství MeSH
- tělesné váhy a míry MeSH
- zpožděný efekt prenatální expozice * MeSH
- zvířata MeSH
- Check Tag
- krysa rodu Rattus MeSH
- lidé MeSH
- mužské pohlaví MeSH
- těhotenství MeSH
- ženské pohlaví MeSH
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- Názvy látek
- konzumní sacharóza MeSH
- krevní glukóza MeSH
- lipidy MeSH
Background: Liver transplantation leads to non-alcoholic fatty liver disease or non-alcoholic steatohepatitis in up to 40% of graft recipients. The aim of our study was to assess transcriptomic profiles of liver grafts and to contrast the hepatic gene expression between the patients after transplantation with vs. without graft steatosis. Methods: Total RNA was isolated from liver graft biopsies of 91 recipients. Clinical characteristics were compared between steatotic (n = 48) and control (n = 43) samples. Their transcriptomic profiles were assessed using Affymetrix HuGene 2.1 ST Array Strips processed in Affymetrix GeneAtlas. Data were analyzed using Partek Genomics Suite 6.6 and Ingenuity Pathway Analysis. Results: The individuals with hepatic steatosis showed higher indices of obesity including weight, waist circumference or BMI but the two groups were comparable in measures of insulin sensitivity and cholesterol concentrations. We have identified 747 transcripts (326 upregulated and 421 downregulated in steatotic samples compared to controls) significantly differentially expressed between grafts with vs. those without steatosis. Among the most downregulated genes in steatotic samples were P4HA1, IGF1, or fetuin B while the most upregulated were PLIN1 and ME1. Most influential upstream regulators included HNF1A, RXRA, and FXR. The metabolic pathways dysregulated in steatotic liver grafts comprised blood coagulation, bile acid synthesis and transport, cell redox homeostasis, lipid and cholesterol metabolism, epithelial adherence junction signaling, amino acid metabolism, AMPK and glucagon signaling, transmethylation reactions, and inflammation-related pathways. The derived mechanistic network underlying major transcriptome differences between steatotic samples and controls featured PPARA and SERPINE1 as main nodes. Conclusions: While there is a certain overlap between the results of the current study and published transcriptomic profiles of non-transplanted livers with steatosis, we have identified discrete characteristics of the non-alcoholic fatty liver disease in liver grafts potentially utilizable for the establishment of predictive signature.
- Klíčová slova
- liver transplant, microarray, non-alcoholic fatty liver disease (NAFLD), predictive signature, transcriptomics profile,
- Publikační typ
- časopisecké články MeSH
BACKGROUND: Glucocorticoids (GCs) are potent therapeutic agents frequently used for treatment of number of conditions, including hematologic, inflammatory, and allergic diseases. Both their therapeutic and adverse effects display significant interindividual variation, partially attributable to genetic factors. We have previously isolated a seven-gene region of rat chromosome 8 sensitizing to dexamethasone (DEX)-induced dyslipidemia and insulin resistance (IR) of skeletal muscle. Using two newly derived congenic strains, we aimed to investigate the effect of one of the prime candidates for this pharmacogenetic interaction, the Zbtb16 gene. METHODS: Adult male rats of SHR-Lx.PD5PD-Zbtb16 (n = 9) and SHR-Lx.PD5SHR-Zbtb16 (n = 8) were fed standard diet (STD) and subsequently treated with DEX in drinking water (2.6 µg/ml) for 3 days. The morphometric and metabolic profiles of both strains including oral glucose tolerance test, triacylglycerols (TGs), free fatty acids, insulin, and C-reactive protein levels were assessed before and after the DEX treatment. Insulin sensitivity of skeletal muscle and visceral adipose tissue was determined by incorporation of radioactively labeled glucose. RESULTS: The differential segment of SHR-Lx.PD5SHR-Zbtb16 rat strain spans 563 kb and contains six genes: Htr3a, Htr3b, Usp28, Zw10, Tmprss5, and part of Drd2. The SHR-Lx.PD5PD-Zbtb16 minimal congenic strain contains only Zbtb16 gene on SHR genomic background and its differential segment spans 254 kb. Total body weight was significantly increased in SHR-Lx.PD5PD-Zbtb16 strain compared with SHR-Lx.PD5SHR-Zbtb16 , however, no differences in the weights of adipose tissue depots were observed. While STD-fed rats of both strains did not show major differences in their metabolic profiles, after DEX treatment the SHR-Lx.PD5PD-Zbtb16 congenic strain showed increased levels of TGs, glucose, and blunted inhibition of lipolysis by insulin. Both basal and insulin-stimulated incorporation of radioactively labeled glucose into skeletal muscle glycogen were significantly reduced in SHR-Lx.PD5PD-Zbtb16 strain, but the insulin sensitivity of adipose tissue was comparable between the two strains. CONCLUSION: The metabolic disturbances including impaired glucose tolerance, dyslipidemia, and IR of skeletal muscle observed after DEX treatment in the congenic SHR-Lx.PD5PD-Zbtb16 reveal the Zbtb16 locus as a possible sensitizing factor for side effects of GC therapy.
- Klíčová slova
- ZBTB16, congenic strain, dexamethasone, insulin resistance, pharmacogenetics and pharmacogenomics, rat models,
- Publikační typ
- časopisecké články MeSH
BACKGROUND: Several members of connexin family of transmembrane proteins were previously implicated in distinct metabolic conditions. In this study we aimed to determine the effects of complete and heterozygous form of connexin50 gene (Gja8) mutation L7Q on metabolic profile and oxidative stress parameters in spontaneously hypertensive inbred rat strain (SHR). METHODS: Adult, standard chow-fed male rats of SHR, heterozygous SHR-Dca+/- and SHR-Dca-/- coisogenic strains were used. At the age of 4 months, dexamethasone (2.6 μg/ml) was administered in the drinking water for three days. The lipidemic profile (cholesterol and triacylglycerol concentration in 20 lipoprotein fractions, chylomicron, VLDL, LDL and HDL particle sizes) together with 33 cytokines and hormones in serum and several oxidative stress parameters in plasma, liver, kidney and heart were assessed. RESULTS: SHR and SHR-Dca-/- rats had similar concentrations of triacylglycerols and cholesterol in all major lipoprotein fractions. The heterozygotes reached significantly highest levels of total (SHR-Dca+/-: 51.3 ± 7.2 vs. SHR: 34.5 ± 2.4 and SHR-Dca-/-: 34.4 ± 2.5 mg/dl, p = 0.026), chylomicron and VLDL triacylglycerols. The heterozygotes showed significantly lowest values of HDL cholesterol (40.9 ± 2.3 mg/dl) compared both to SHR (51.8 ± 2.2 mg/dl) and SHR-Dca-/- (48.6 ± 2.7 mg/dl). Total and LDL cholesterol in SHR-Dca+/- was lower compared to SHR. Glucose tolerance was improved and insulin concentrations were lowest in SHR-Dca-/- (1.11 ± 0.20 pg/ml) in comparison with both SHR (2.32 ± 0.49 pg/ml) and SHR-Dca+/- (3.04 ± 0.21 pg/ml). The heterozygous rats showed profile suggestive of increased oxidative stress as well as highest serum concentrations of several pro-inflammatory cytokines including interleukins 6, 12, 17, 18 and tumor necrosis factor alpha. CONCLUSIONS: Our results demonstrate that connexin50 mutation in heterozygous state affects significantly the lipid profile and the oxidative stress parameters in the spontaneously hypertensive rat strain.
- Klíčová slova
- Animal models, Connexin, Lipoprotein, Metabolic syndrome, Oxidative stress,
- MeSH
- cholesterol krev MeSH
- cytokiny krev MeSH
- heterozygot * MeSH
- inzulin krev MeSH
- konexiny genetika MeSH
- krysa rodu Rattus MeSH
- metabolický syndrom krev genetika metabolismus MeSH
- missense mutace * MeSH
- oxidační stres MeSH
- potkani inbrední SHR MeSH
- triglyceridy krev MeSH
- zvířata MeSH
- Check Tag
- krysa rodu Rattus MeSH
- mužské pohlaví MeSH
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- Názvy látek
- cholesterol MeSH
- connexin 50 MeSH Prohlížeč
- cytokiny MeSH
- inzulin MeSH
- konexiny MeSH
- triglyceridy MeSH