Nejvíce citovaný článek - PubMed ID 10395466
Cyanobacteria are prokaryotic organisms characterised by their complex structures and a wide range of pigments. With their ability to fix CO2, cyanobacteria are interesting for white biotechnology as cell factories to produce various high-value metabolites such as polyhydroxyalkanoates, pigments, or proteins. White biotechnology is the industrial production and processing of chemicals, materials, and energy using microorganisms. It is known that exposing cyanobacteria to low levels of stressors can induce the production of secondary metabolites. Understanding of this phenomenon, known as hormesis, can involve the strategic application of controlled stressors to enhance the production of specific metabolites. Consequently, precise measurement of cyanobacterial viability becomes crucial for process control. However, there is no established reliable and quick viability assay protocol for cyanobacteria since the task is challenging due to strong interferences of autofluorescence signals of intercellular pigments and fluorescent viability probes when flow cytometry is used. We performed the screening of selected fluorescent viability probes used frequently in bacteria viability assays. The results of our investigation demonstrated the efficacy and reliability of three widely utilised types of viability probes for the assessment of the viability of Synechocystis strains. The developed technique can be possibly utilised for the evaluation of the importance of polyhydroxyalkanoates for cyanobacterial cultures with respect to selected stressor-repeated freezing and thawing. The results indicated that the presence of polyhydroxyalkanoate granules in cyanobacterial cells could hypothetically contribute to the survival of repeated freezing and thawing.
- Klíčová slova
- Biotechnology, Cyanobacteria, Flow cytometry, Fluorescent viability probes, Stress resistance, Viability assessment,
- MeSH
- fluorescence MeSH
- fluorescenční barviva * metabolismus chemie MeSH
- fyziologický stres * MeSH
- mikrobiální viabilita * MeSH
- polyhydroxyalkanoáty metabolismus MeSH
- průtoková cytometrie * MeSH
- sinice metabolismus fyziologie MeSH
- Synechocystis * metabolismus MeSH
- Publikační typ
- časopisecké články MeSH
- Názvy látek
- fluorescenční barviva * MeSH
- polyhydroxyalkanoáty MeSH
Cellular autofluorescence is usually considered to be a negative phenomenon because it can affect the sensitivity of fluorescence microscopic or flow cytometric assays by interfering with the signal of various fluorescent probes. Nevertheless, in our work, we adopted a different approach, and green autofluorescence induced by flavins was used as a tool to monitor fermentation employing the bacterium Cupriavidus necator. The autofluorescence was used to distinguish microbial cells from abiotic particles in flow cytometry assays, and it was also used for the determination of viability or metabolic characteristics of the microbial cells. The analyses using two complementary techniques, namely fluorescence microscopy and flow cytometry, are simple and do not require labor sample preparation. Flavins and their autofluorescence can also be used in a combination with other fluorophores when the need for multi-parametrical analyses arises, but it is wise to use dyes that do not emit a green light in order to not interfere with flavins' emission band (500-550 nm).
- Klíčová slova
- average fluorescence lifetimes, bacteria, flavins, green autofluorescence, viability,
- Publikační typ
- časopisecké články MeSH
The microbial biofilms are ubiquitous in nature and represent important biological entities that affect various aspects of human life. As such, they attracted considerable attention during last decades, with the factors affecting the biofilm development being among the frequently studied topics. In our work, the biofilm was cultivated on the surface of polypropylene fibers in a nutrient medium inoculated by the suspension of two unsterile soils. The effects of ionic strength and valence of salt on the amount of the produced biofilm and on composition of biofilm microbial communities were investigated. The effect of valence was significant in some OTUs: Arthrobacter/Pseudarthrobacter/Paenarthrobacter and Bacillus with positive response to monovalent salt (KCl) and Streptomyces, Lysinibacillus, Pseudomonas, and Ensifer with positive response to divalent salt (MgSO4). The significant preference for a certain concentration of salts was observed in the case of OTUs Agrobacterium, Bacillus (both 100 mM), and Brevundimonas (30 mM). A new quantification method based on measuring of oxidizable organic carbon in biofilm biomass, based on dichromate oxidation, was used. We compared the results obtained using this method with results of crystal violet destaining and measuring of extracted DNA concentration as proxies of the biofilm biomass. The dichromate oxidation is simple, inexpensive, and fast, and our results show that it may be more sensitive than crystal violet destaining. The highest biomass values tended to associate with high concentrations of the divalent salt. This trend was not observed in treatments where the monovalent salt was added. Our data confirm the importance of inorganic ions for biofilm composition and biomass accumulation.
- Klíčová slova
- Biofilm, Dichromate oxidation, Ionic strength, Quantification, Valence,
- MeSH
- Bacteria klasifikace účinky léků genetika izolace a purifikace MeSH
- bakteriologické techniky MeSH
- biofilmy účinky léků růst a vývoj MeSH
- biomasa MeSH
- kultivační média chemie MeSH
- mikrobiota účinky léků MeSH
- minerály analýza farmakologie MeSH
- polypropyleny MeSH
- půdní mikrobiologie MeSH
- soli analýza farmakologie MeSH
- Publikační typ
- časopisecké články MeSH
- Názvy látek
- kultivační média MeSH
- minerály MeSH
- polypropyleny MeSH
- soli MeSH
An inexorable switch from antibiotics has become a major desideratum to overcome antibiotic resistance. Bacteriocin from Lactobacillus casei, a cardinal probiotic was used to design novel antibacterial peptides named as Probiotic Bacteriocin Derived and Modified (PBDM) peptides (PBDM1: YKWFAHLIKGLC and PBDM2: YKWFRHLIKKLC). The loop-shaped 3D structure of peptides was characterized in silico via molecular dynamics simulation as well as biophysically via spectroscopic methods. Thereafter, in vitro results against multidrug resistant bacterial strains and hospital samples demonstrated the strong antimicrobial activity of PBDM peptides. Further, in vivo studies with PBDM peptides showed downright recovery of balb/c mice from Vancomycin Resistant Staphylococcus aureus (VRSA) infection to its healthy condition. Thereafter, in vitro study with human epithelial cells showed no significant cytotoxic effects with high biocompatibility and good hemocompatibility. In conclusion, PBDM peptides displayed significant antibacterial activity against certain drug resistant bacteria which cause infections in human beings. Future analysis are required to unveil its mechanism of action in order to execute it as an alternative to antibiotics.
- Klíčová slova
- antibacterial peptides, antibiotics, bacteria, infections, multidrug resistance,
- Publikační typ
- časopisecké články MeSH
Stimulated by demands of the natural environment conservation, the need for thorough structural and functional identification of microorganisms colonizing different ecosystems has contributed to an intensive advance in research techniques. The article shows that some of these techniques are also a convenient tool for determination of the physiological state of single cells in a community of microorganisms. The paper presents selected fluorescent techniques, which are used in research on soil, water and sediment microorganisms. It covers the usability of determination of the dehydrogenase activity of an individual bacterial cell (CTC+) and of bacteria with intact, functioning cytoplasmic membranes, bacteria with an integrated nucleiod (NuCC+) as well as fluorescent in situ hybridization (FISH).
- MeSH
- Bacteria chemie enzymologie genetika izolace a purifikace MeSH
- bakteriální proteiny analýza MeSH
- fluorometrie metody MeSH
- fyziologie bakterií * MeSH
- hybridizace in situ fluorescenční MeSH
- mikrobiologie vody * MeSH
- půdní mikrobiologie * MeSH
- techniky typizace bakterií metody MeSH
- Publikační typ
- časopisecké články MeSH
- přehledy MeSH
- Názvy látek
- bakteriální proteiny MeSH