Nejvíce citovaný článek - PubMed ID 10943515
Within the microsporidian genus Encephalitozoon, three species, Encephalitozoon cuniculi, Encephalitozoon hellem and Encephalitozoon intestinalis have been described. Several orders of the Class Aves (Passeriformes, Psittaciformes, Apodiformes, Ciconiiformis, Gruiformes, Columbiformes, Suliformes, Podicipediformes, Anseriformes, Struthioniformes, Falconiformes) and of the Class Mammalia (Rodentia, Lagomorpha, Primates, Artyodactyla, Soricomorpha, Chiroptera, Carnivora) can become infected. Especially E. cuniculi has a very broad host range while E. hellem is mainly distributed amongst birds. E. intestinalis has so far been detected only sporadically in wild animals. Although genotyping allows the identification of strains with a certain host preference, recent studies have demonstrated that they have no strict host specificity. Accordingly, humans can become infected with any of the four strains of E. cuniculi as well as with E. hellem or E. intestinalis, the latter being the most common. Especially, but not exclusively, immunocompromised people are at risk. Environmental contamination with as well as direct transmission of Encephalitozoon is therefore highly relevant for public health. Moreover, endangered species might be threatened by the spread of pathogens into their habitats. In captivity, clinically overt and often fatal disease seems to occur frequently. In conclusion, Encephalitozoon appears to be common in wild warm-blooded animals and these hosts may present important reservoirs for environmental contamination and maintenance of the pathogens. Similar to domestic animals, asymptomatic infections seem to occur frequently but in captive wild animals severe disease has also been reported. Detailed investigations into the epidemiology and clinical relevance of these microsporidia will permit a full appraisal of their role as pathogens.
- Klíčová slova
- Encephalitozoon cuniculi, Encephalitozoon intestinalis, Encephalitzoon hellem, Genotype, Reservoir, Zoonosis,
- Publikační typ
- časopisecké články MeSH
- přehledy MeSH
From 2011 to 2012, the occurrence of Enterocytozoon bieneusi and Encephalitozoon spp. was surveyed at 29 randomly selected localities (both forest areas and enclosures) across four Central European countries: Austria, the Czech Republic, Poland, and the Slovak Republic. Isolates were genotyped by PCR amplification and characterization of the internal transcribed spacer (ITS) region using Enterocytozoon and Encephalitozoon-specific protocols. PCR revealed 16 mono-infections of Encephalitozoon cuniculi, 33 mono-infections of Enterocytozoon bieneusi and 5 concurrent infections of both Encephalitozoon cuniculi and Enterocytozoon bieneusi out of 460 faecal samples. Two genotypes (I and II) were revealed by sequence analysis of the ITS region of Encephalitozoon cuniculi. Eleven genotypes, five previously found in other hosts including domestic pigs (D, EbpA, EbpC, G and Henan-I) and six novel (WildBoar1-6), were identified in Enterocytozoon bieneusi. No other microsporidia infection was found in the examined faecal samples. Prevalence of microsporidia at the locality level ranged from 0 to 58.8 %; the prevalence was less than 25 % at more than 86 % of localities. Enterocytozoon bieneusi was detected as a predominant species infecting Eurasian wild boars (Sus scrofa). The present report is the most comprehensive survey of microsporidia infections in wild boars within the Czech Republic and selected Central European countries.
- MeSH
- Encephalitozoon cuniculi genetika izolace a purifikace MeSH
- encephalitozoonóza epidemiologie mikrobiologie veterinární MeSH
- Enterocytozoon klasifikace genetika izolace a purifikace MeSH
- feces mikrobiologie MeSH
- genotyp MeSH
- mikrosporidióza epidemiologie mikrobiologie veterinární MeSH
- polymerázová řetězová reakce MeSH
- prevalence MeSH
- Sus scrofa mikrobiologie MeSH
- zvířata MeSH
- Check Tag
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- Geografické názvy
- Česká republika epidemiologie MeSH
- Polsko epidemiologie MeSH
- Rakousko epidemiologie MeSH
- Slovenská republika epidemiologie MeSH
BACKGROUND: Microsporidia are obligate intracellular parasites causing severe infections with lethal outcome in immunocompromised hosts. However, these pathogens are more frequently reported as latent infections in immunocompetent individuals and raises questions about the potential risk of reactivation following induced immunosuppression. AIMS: To evaluate the possibility latent microsporidiosis, efficacy or albendazole, and reactivation, the authors monitored the course of E. cuniculi infection in immunocompetent BALB/c mice and immunodeficient SCID mice using molecular methods. METHODS: Mice were per orally infected with 10(7) spores of E. cuniculi. Selected groups were treated with albendazole, re-infected or chemically immunosuppressed by dexamethasone. The presence of microsporidia in the host's organs and feces were determined using PCR methods. Changes in numbers of lymphocytes in blood and in spleen after induction of immunosuppression were confirmed using flow cytometry analysis. RESULTS: Whereas E. cuniculi caused lethal microsporidiosis in SCID mice, the infection in BABL/c mice remained asymptomatic despite parasite dissemination into many organs during the acute infection phase. Albendazole treatment led to microsporidia elimination from organs in BALB/c mice. In SCID mice, however, only a temporary reduction in number of affected organs was observed and infection re-established post-treatment. Dexamethasone treatment resulted in a chronic microsporidia infection disseminating into most organs in BALB/c mice. Although the presence of E. cuniculi in organs of albendazole- treated mice was undetectable by PCR, it was striking that infection was reactivated by immunosuppression treatment. CONCLUSION: Our results demonstrated that microsporidia can successfully survive in organs of immunocompetent hosts and are able to reactivate from undetectable levels and spread within these hosts after induction of immunosuppression. These findings stress the danger of latent microsporidiosis as a life-threatening risk factor especially for individuals undergoing chemotherapy and in transplant recipients of organs originating from infected donors.
- MeSH
- albendazol terapeutické užití MeSH
- Cercopithecus aethiops MeSH
- dexamethason MeSH
- Encephalitozoon cuniculi * MeSH
- encephalitozoonóza farmakoterapie imunologie MeSH
- feces mikrobiologie MeSH
- modely nemocí na zvířatech * MeSH
- myši inbrední BALB C MeSH
- myši SCID MeSH
- myši MeSH
- počet lymfocytů MeSH
- polymerázová řetězová reakce MeSH
- průtoková cytometrie MeSH
- Vero buňky MeSH
- vnitřnosti mikrobiologie MeSH
- zvířata MeSH
- Check Tag
- myši MeSH
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- Názvy látek
- albendazol MeSH
- dexamethason MeSH
In the present population-based study, we determined the prevalences of the most common human-pathogenic microsporidia, Encephalitozoon spp. and Enterocytozoon bieneusi, in asymptomatic healthy people living in the Czech Republic. A total of 382 males and females (ages, 1 to 84 years) living in the Czech Republic, of whom 265 were Czech nationals and 117 were foreign students, were included in a study testing for the presence of microsporidia by use of coprology and molecular methods. Single-species infections with Enterocytozoon bieneusi or an Encephalitozoon sp. were detected for 9 and 136 individuals, respectively. Moreover, coinfections were detected for 14 individuals. Four genotypes of 3 human-pathogenic Encephalitozoon spp. and 7 E. bieneusi genotypes, including 3 novel genotypes, were detected. Some of these were reported in humans for the first time. The highest prevalence was recorded for individuals older than 50 years and for loose, unformed stool samples. These findings clearly show that exposure to microsporidia is common among immunocompetent people and that microsporidiosis is not linked to any clinical manifestation in healthy populations.
- MeSH
- asymptomatické infekce epidemiologie MeSH
- DNA fungální chemie genetika MeSH
- dospělí MeSH
- Encephalitozoon klasifikace izolace a purifikace MeSH
- encephalitozoonóza epidemiologie mikrobiologie MeSH
- lidé středního věku MeSH
- lidé MeSH
- molekulární sekvence - údaje MeSH
- prevalence MeSH
- sekvenční analýza DNA MeSH
- Check Tag
- dospělí MeSH
- lidé středního věku MeSH
- lidé MeSH
- mužské pohlaví MeSH
- ženské pohlaví MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- Geografické názvy
- Česká republika epidemiologie MeSH
- Názvy látek
- DNA fungální MeSH
To determine seropositivity for Enterocytozoon bieneusi in the Czech Republic, we tested 115 serum samples from various groups. We found that 20% from HIV-positive persons, 33% from persons with occupational exposure to animals, and 10% from healthy persons were positive by indirect immunofluorescence assay. Proteins of 32 kDa were detected in serum samples from seropositive persons.
- MeSH
- dárci krve statistika a číselné údaje MeSH
- Enterocytozoon * MeSH
- HIV infekce komplikace epidemiologie MeSH
- lidé MeSH
- mikrosporidióza komplikace epidemiologie MeSH
- pracovní expozice statistika a číselné údaje MeSH
- séroepidemiologické studie MeSH
- surveillance populace * MeSH
- Check Tag
- lidé MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- Geografické názvy
- Česká republika epidemiologie MeSH
The Microsporidia have been reported to cause a wide range of clinical diseases particularly in patients that are immunosuppressed. They can infect virtually any organ system and cases of gastrointestinal infection, encephalitis, ocular infection, sinusitis, myositis and disseminated infection are well described in the literature. While benzimidazoles such as albendazole are active against many species of Microsporidia, these drugs do not have significant activity against Enterocytozoon bieneusi. Fumagillin, ovalicin and their analogues have been demonstrated to have antimicrosporidial activity in vitro and in animal models of microsporidiosis. Fumagillin has also been demonstrated to have efficacy in human infections due to E. bieneusi. Fumagillin is an irreversible inhibitor of methionine aminopeptidase type 2 (MetAP2). Homology cloning employing the polymerase chain reaction was used to identify the MetAP2 gene from the human pathogenic microsporidia Encephalitozoon cuniculi, Encephalitozoon hellem, Encephalitozoon intestinalis, Brachiola algerae and E. bieneusi. The full-length MetAP2 coding sequence was obtained for all of the Encephalitozoonidae. Recombinant E. cuniculi MetAP2 was produced in baculovirus and purified using chromatographic techniques. The in vitro activity and effect of the inhibitors bestatin and TNP-470 on this recombinant microsporidian MetAP2 was characterized. An in silico model of E. cuniculi MetAP2 was developed based on crystallographic data on human MetAP2. These reagents provide new tools for the development of in vitro assay systems to screen candidate compounds for use as new therapeutic agents for the treatment of microsporidiosis.
- MeSH
- aminopeptidasy chemie genetika metabolismus MeSH
- Apansporoblastina enzymologie genetika MeSH
- Baculoviridae MeSH
- DNA primery MeSH
- druhová specificita MeSH
- fylogeneze * MeSH
- genetické vektory genetika MeSH
- imunoblotting MeSH
- metaloendopeptidasy chemie genetika metabolismus MeSH
- molekulární modely * MeSH
- molekulární sekvence - údaje MeSH
- sekvence aminokyselin MeSH
- sekvence nukleotidů MeSH
- sekvenční analýza DNA MeSH
- sekvenční seřazení MeSH
- shluková analýza MeSH
- spory hub metabolismus MeSH
- zvířata MeSH
- Check Tag
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- Research Support, N.I.H., Extramural MeSH
- Research Support, U.S. Gov't, P.H.S. MeSH
- srovnávací studie MeSH
- Názvy látek
- aminopeptidasy MeSH
- DNA primery MeSH
- metaloendopeptidasy MeSH
- methionine aminopeptidase 2 MeSH Prohlížeč