Nejvíce citovaný článek - PubMed ID 12016314
Bile acids are crucial for the uptake of dietary lipids and can shape the gut-microbiome composition. This latter function is associated with the toxicity of bile acids and can be modulated by bile acid modifying bacteria such as Eggerthella lenta, but the molecular details of the interaction of bacteria depending on bile acid modifications are not well understood. In order to unravel the molecular response to bile acids and their metabolites, we cultivated eight strains from a human intestinal microbiome model alone and in co-culture with Eggerthella lenta in the presence of cholic acid (CA) and deoxycholic acid (DCA). We observed growth inhibition of particularly gram-positive strains such as Clostridium ramosum and the gram-variable Anaerostipes cacae by CA and DCA stress. C. ramosum was alleviated through co-culturing with Eggerthella lenta. We approached effects on the membrane by zeta potential and genotoxic and metabolic effects by (meta)proteomic and metabolomic analyses. Co-culturing with Eggerthella lenta decreased both CA and DCA by the formation of oxidized and epimerized bile acids. Eggerthella lenta also produces microbial bile salt conjugates in a co-cultured species-specific manner. This study highlights how the interaction with other bacteria can influence the functionality of bacteria.
- Klíčová slova
- bile acids, eggerthella lenta, gut microbiome interaction, hydroysteroid dehydrogenase, metabolomics, metaproteomics,
- Publikační typ
- časopisecké články MeSH
Bile acids (BAs) are important steroidal molecules with a rapidly growing span of applications across a variety of fields such as supramolecular chemistry, pharmacy, and biomedicine. This work provides a systematic review on their transport processes within the enterohepatic circulation and related processes. The focus is laid on the description of specific or less-specific BA transport proteins and their localization. Initially, the reader is provided with essential information about BAs' properties, their systemic flow, metabolism, and functions. Later, the transport processes are described in detail and schematically illustrated, moving step by step from the liver via bile ducts to the gallbladder, small intestine, and colon; this description is accompanied by descriptions of major proteins known to be involved in BA transport. Spillage of BAs into systemic circulation and urine excretion are also discussed. Finally, the review also points out some of the less-studied areas of the enterohepatic circulation, which can be crucial for the development of BA-related drugs, prodrugs, and drug carrier systems.
- Klíčová slova
- ASBT, IBABP, MDR, MRP, NTCP, OATP, bile acid, bile salt, drug delivery, enterohepatic circulation, transport protein,
- MeSH
- enterohepatická cirkulace * MeSH
- játra metabolismus MeSH
- transportní proteiny metabolismus MeSH
- žlučové cesty MeSH
- žlučové kyseliny a soli * metabolismus MeSH
- Publikační typ
- časopisecké články MeSH
- přehledy MeSH
- systematický přehled MeSH
- Názvy látek
- transportní proteiny MeSH
- žlučové kyseliny a soli * MeSH