Nejvíce citovaný článek - PubMed ID 12662601
This study investigated the striatopallidal complex's involvement in status epilepticus (SE) caused by morphological neurodegenerative changes in a post-natal immature developing brain in a lithium-pilocarpine male Wistar albino rat model of mesial temporal lobe epilepsy. One hundred experimental pups were grouped by age as follows: 12, 15, 18, 21, and 25 days. SE was induced by lithium-pilocarpine. Brain sections were microscopically examined by Fluoro-Jade B fluorescence stain at intervals of 4, 12, 24, and 48 h and 1 week after SE. Each interval was composed of four induced SE pups and a control. Fluoro-Jade B positive neurons in the dorsal striatum (DS) were screened and plotted on stereotaxic rat brain maps. The DS showed consistent neuronal damage in pups aged 18, 21, and 25 days. The peak of the detected damage was observed in pups aged 18 days, and the start of the morphological sequela was observed 12 h post SE. The neuronal damage in the DS was distributed around its periphery, extending medially. The damaged neurons showed intense Fluoro-Jade B staining at the intervals of 12 and 24 h post SE. SE neuronal damage was evidenced in the post-natal developing brain selectively in the DS and was age-dependent with differing morphological sequela.
- Klíčová slova
- basal ganglia, degenerative neuronal changes, dorsal striatum, epilepsy, rat brain, seizure, status epilepticus,
- MeSH
- corpus striatum * patologie metabolismus MeSH
- epilepsie temporálního laloku * patologie chemicky indukované MeSH
- krysa rodu Rattus MeSH
- modely nemocí na zvířatech MeSH
- neurony patologie metabolismus MeSH
- pilokarpin MeSH
- potkani Wistar MeSH
- status epilepticus * patologie chemicky indukované MeSH
- zvířata MeSH
- Check Tag
- krysa rodu Rattus MeSH
- mužské pohlaví MeSH
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- Názvy látek
- pilokarpin MeSH
OBJECTIVES: The aim was to describe the contribution of basal ganglia (BG) thalamo-cortical circuitry to the whole-brain functional connectivity in focal epilepsies. METHODS: Interictal resting-state fMRI recordings were acquired in 46 persons with focal epilepsies. Of these 46, 22 had temporal lobe epilepsy: 9 left temporal (LTLE), 13 right temporal (RTLE); 15 had frontal lobe epilepsy (FLE); and 9 had parietal/occipital lobe epilepsy (POLE). There were 20 healthy controls. The complete weighted network was analyzed based on correlation matrices of 90 and 194 regions. The network topology was quantified on a global and regional level by measures based on graph theory, and connection-level changes were analyzed by the partial least square method. RESULTS: In all patient groups except RTLE, the shift of the functional network topology away from random was observed (normalized clustering coefficient and characteristic path length were higher in patient groups than in controls). Links contributing to this change were found in the cortico-subcortical connections. Weak connections (low correlations) consistently contributed to this modification of the network. The importance of regions changed: decreases in the subcortical areas and both decreases and increases in the cortical areas were observed in node strength, clustering coefficient and eigenvector centrality in patient groups when compared to controls. Node strength decreases of the basal ganglia, i.e. the putamen, caudate, and pallidum, were displayed in LTLE, FLE, and POLE. The connectivity within the basal ganglia-thalamus circuitry was not disturbed; the disturbance concerned the connectivity between the circuitry and the cortex. SIGNIFICANCE: Focal epilepsies affect large-scale brain networks beyond the epileptogenic zones. Cortico-subcortical functional connectivity disturbance was displayed in LTLE, FLE, and POLE. Significant changes in the resting-state functional connectivity between cortical and subcortical structures suggest an important role of the BG and thalamus in focal epilepsies.
- Klíčová slova
- Epilepsy, Functional connectivity, Functional magnetic resonance imaging, Network analysis, Partial least square analysis,
- MeSH
- bazální ganglia diagnostické zobrazování patofyziologie MeSH
- dospělí MeSH
- elektroencefalografie MeSH
- epilepsie parciální diagnostické zobrazování patofyziologie MeSH
- kyslík krev MeSH
- lidé středního věku MeSH
- lidé MeSH
- magnetická rezonanční tomografie MeSH
- mapování mozku * MeSH
- mladý dospělý MeSH
- mozková kůra diagnostické zobrazování MeSH
- nervová síť diagnostické zobrazování MeSH
- nervové dráhy diagnostické zobrazování patofyziologie MeSH
- počítačové zpracování obrazu MeSH
- senioři MeSH
- Check Tag
- dospělí MeSH
- lidé středního věku MeSH
- lidé MeSH
- mladý dospělý MeSH
- mužské pohlaví MeSH
- senioři MeSH
- ženské pohlaví MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- Názvy látek
- kyslík MeSH