Nejvíce citovaný článek - PubMed ID 14722607
Natural products have many healing effects on the skin with minimal or no adverse effects. In this study, we analyzed the regenerative properties of a waste product (hydrolate) derived from Helichrysum italicum (HH) on scratch-tested skin cell populations seeded on a fluidic culture system. Helichrysum italicum has always been recognized in the traditional medicine of Mediterranean countries for its wide pharmacological activities. We recreated skin physiology with a bioreactor that mimics skin stem cell (SSCs) and fibroblast (HFF1) communication as in vivo skin layers. Dynamic culture models represent an essential instrument for recreating and preserving the complex multicellular organization and interactions of the cellular microenvironment. Both cell types were exposed to two different concentrations of HH after the scratch assay and were compared to untreated control cells. Collagen is the constituent of many wound care products that act directly on the damaged wound environment. We analyzed the role played by HH in stimulating collagen production during tissue repair, both in static and dynamic culture conditions, by a confocal microscopic analysis. In addition, we performed a gene expression analysis that revealed the activation of a molecular program of stemness in treated skin stem cells. Altogether, our results indicate a future translational application of this natural extract to support skin regeneration and define a new protocol to recreate a dynamic process of healing.
- Klíčová slova
- Helichrysum italicum, bioreactor, dynamic cultures, fibroblasts, molecular mechanisms, stem cells, tissue regeneration, wound healing,
- MeSH
- fibroblasty metabolismus účinky léků MeSH
- Helichrysum * chemie MeSH
- hojení ran * účinky léků MeSH
- kmenové buňky metabolismus účinky léků cytologie MeSH
- kolagen * metabolismus MeSH
- kultivované buňky MeSH
- kůže * metabolismus účinky léků MeSH
- lidé MeSH
- regenerace * účinky léků MeSH
- rostlinné extrakty * farmakologie MeSH
- Check Tag
- lidé MeSH
- Publikační typ
- časopisecké články MeSH
- Názvy látek
- kolagen * MeSH
- rostlinné extrakty * MeSH
The skin is the primary tissue affected by wounds and aging, significantly impacting its protective function. Natural products are widely used in cosmetics, representing a new approach to preventing age-related damage. Nanomedicine combines nanotechnology and traditional treatments to create innovative drugs. The main targets of nanotechnological approaches are wound healing, regeneration, and rejuvenation of skin tissue. The skin barrier is not easily permeable, and the creation of modern nanodevices is a way to improve the passive penetration of substances. In this study, Helichrysum italicum oil (HO) was combined with different types of electrospun nanofibers to study their protective activity on the skin and to evaluate their future application for topical treatments. In the present research, we used biodegradable polymers, including polyvinyl alcohol (PVA) and polyvinylpyrrolidone (PVP), which were characterized by a scanning electron microscope (SEM). All results show a positive trend in cell proliferation and viability of human skin stem cells (SSCs) and BJ fibroblasts pre-treated with combined nanofibers and then exposed to UV stress. Gene expression analysis revealed the activation of a molecular rejuvenation program in SSCs treated with functionalized nanofibers before UV exposure. Understanding the mechanisms involved in skin changes during aging allows for the future application of nanomaterials combined with HO directly to the patients.
- Klíčová slova
- Helichrysum italicum, bioactive molecules, drug delivery, molecular mechanisms, nanofibers, nanosystem, skin aging, stem cells,
- MeSH
- biologické přípravky * farmakologie MeSH
- hojení ran MeSH
- kůže MeSH
- lidé MeSH
- nanovlákna * MeSH
- polyvinylalkohol MeSH
- stárnutí kůže * MeSH
- Check Tag
- lidé MeSH
- Publikační typ
- časopisecké články MeSH
- Názvy látek
- biologické přípravky * MeSH
- polyvinylalkohol MeSH
Natural cosmetic products have recently re-emerged as a novel tool able to counteract skin aging and skin related damages. In addition, recently achieved progress in nanomedicine opens a novel approach yielding from combination of modern nanotechnology with traditional treatment for innovative pharmacotherapeutics. In the present study, we investigated the antiaging effect of a pretreatment with Myrtus communis natural extract combined with a polycaprolactone nanofibrous scaffold (NanoPCL-M) on skin cell populations exposed to UV. We set up a novel model of skin on a bioreactor mimicking a crosstalk between keratinocytes, stem cells and fibroblasts, as in skin. Beta-galactosidase assay, indicating the amount of senescent cells, and viability assay, revealed that fibroblasts and stem cells pretreated with NanoPCL-M and then exposed to UV are superimposable to control cells, untreated and unexposed to UV damage. On the other hand, cells only exposed to UV stress, without NanoPCL-M pretreatment, exhibited a significantly higher yield of senescent elements. Keratinocyte-based 3D structures appeared disjointed after UV-stress, as compared to NanoPCL-M pretreated samples. Gene expression analysis performed on different senescence associated genes, revealed the activation of a molecular program of rejuvenation in stem cells pretreated with NanoPCL-M and then exposed to UV. Altogether, our results highlight a future translational application of NanoPCL-M to prevent skin aging.
- Klíčová slova
- 4D dynamic model, biophysics, cell senescence, cellular mechanisms, nanofibers, natural extracts, precision medicine, skin aging, stem cells,
- MeSH
- exprese genu účinky léků MeSH
- fibroblasty účinky léků MeSH
- keratinocyty účinky léků MeSH
- kmenové buňky účinky léků MeSH
- kultivované buňky MeSH
- kůže účinky léků MeSH
- lidé MeSH
- Myrtus chemie MeSH
- nanovlákna chemie MeSH
- polyestery chemie MeSH
- proliferace buněk účinky léků MeSH
- rostlinné extrakty farmakologie MeSH
- stárnutí buněk účinky léků MeSH
- stárnutí kůže účinky léků MeSH
- ultrafialové záření škodlivé účinky MeSH
- Check Tag
- lidé MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- Názvy látek
- polycaprolactone MeSH Prohlížeč
- polyestery MeSH
- rostlinné extrakty MeSH