Nejvíce citovaný článek - PubMed ID 15910274
FtsH proteases (FtsHs) belong to intramembrane ATP-dependent metalloproteases which are widely distributed in eubacteria, mitochondria and chloroplasts. The best-studied roles of FtsH in Escherichia coli include quality control of membrane proteins, regulation of response to heat shock, superoxide stress and viral infection, and control of lipopolysaccharide biosynthesis. While heterotrophic bacteria mostly contain a single indispensable FtsH complex, photosynthetic cyanobacteria usually contain three FtsH complexes: two heterocomplexes and one homocomplex. The essential cytoplasmic FtsH1/3 most probably fulfills a role similar to other bacterial FtsHs, whereas the thylakoid FtsH2/3 heterocomplex and FtsH4 homocomplex appear to maintain the photosynthetic apparatus of cyanobacteria and optimize its functionality. Moreover, recent studies suggest the involvement of all FtsH proteases in a complex response to nutrient stresses. In this review, we aim to comprehensively evaluate the functions of the cyanobacterial FtsHs specifically under stress conditions with emphasis on nutrient deficiency and high irradiance. We also point to various unresolved issues concerning FtsH functions, which deserve further attention.
- Klíčová slova
- Cyanobacteria, FtsH, Nutrient stress, Photodamage, Photosystem,
- MeSH
- bakteriální proteiny * metabolismus genetika MeSH
- fyziologický stres * MeSH
- proteasy závislé na ATP metabolismus genetika MeSH
- sinice * metabolismus fyziologie MeSH
- Publikační typ
- časopisecké články MeSH
- přehledy MeSH
- Názvy látek
- bakteriální proteiny * MeSH
- proteasy závislé na ATP MeSH
FtsH proteases are membrane-embedded proteolytic complexes important for protein quality control and regulation of various physiological processes in bacteria, mitochondria, and chloroplasts. Like most cyanobacteria, the model species Synechocystis sp. PCC 6803 contains four FtsH homologs, FtsH1-FtsH4. FtsH1-FtsH3 form two hetero-oligomeric complexes, FtsH1/3 and FtsH2/3, which play a pivotal role in acclimation to nutrient deficiency and photosystem II quality control, respectively. FtsH4 differs from the other three homologs by the formation of a homo-oligomeric complex, and together with Arabidopsis thaliana AtFtsH7/9 orthologs, it has been assigned to another phylogenetic group of unknown function. Our results exclude the possibility that Synechocystis FtsH4 structurally or functionally substitutes for the missing or non-functional FtsH2 subunit in the FtsH2/3 complex. Instead, we demonstrate that FtsH4 is involved in the biogenesis of photosystem II by dual regulation of high light-inducible proteins (Hlips). FtsH4 positively regulates expression of Hlips shortly after high light exposure but is also responsible for Hlip removal under conditions when their elevated levels are no longer needed. We provide experimental support for Hlips as proteolytic substrates of FtsH4. Fluorescent labeling of FtsH4 enabled us to assess its localization using advanced microscopic techniques. Results show that FtsH4 complexes are concentrated in well-defined membrane regions at the inner and outer periphery of the thylakoid system. Based on the identification of proteins that co-purified with the tagged FtsH4, we speculate that FtsH4 concentrates in special compartments in which the biogenesis of photosynthetic complexes takes place.
- Klíčová slova
- FtsH4, high light-inducible protein, photosystem II biogenesis, proteolysis, thylakoid,
- MeSH
- Arabidopsis * genetika metabolismus MeSH
- chloroplasty metabolismus MeSH
- fotosystém II (proteinový komplex) genetika metabolismus MeSH
- fylogeneze MeSH
- metaloproteasy genetika metabolismus MeSH
- proteasy MeSH
- proteiny huseníčku * genetika metabolismus MeSH
- Synechocystis * genetika metabolismus MeSH
- tylakoidy metabolismus MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- Názvy látek
- fotosystém II (proteinový komplex) MeSH
- FtsH4 protein, Arabidopsis MeSH Prohlížeč
- metaloproteasy MeSH
- proteasy MeSH
- proteiny huseníčku * MeSH
The selective replacement of photodamaged D1 protein within the multisubunit photosystem II (PSII) complex is an important photoprotective mechanism in chloroplasts and cyanobacteria. FtsH proteases are involved at an early stage of D1 degradation, but it remains unclear how the damaged D1 subunit is recognized, degraded, and replaced. To test the role of the N-terminal region of D1 in PSII biogenesis and repair, we have constructed mutants of the cyanobacterium Synechocystis sp PCC 6803 that are truncated at the exposed N terminus. Removal of 5 or 10 residues blocked D1 synthesis, as assessed in radiolabeling experiments, whereas removal of 20 residues restored the ability to assemble oxygen-evolving dimeric PSII complexes but inhibited PSII repair at the level of D1 degradation. Overall, our results identify an important physiological role for the exposed N-terminal tail of D1 at an early step in selective D1 degradation. This finding has important implications for the recognition of damaged D1 and its synchronized replacement by a newly synthesized subunit.
- MeSH
- autotrofní procesy účinky léků účinky záření MeSH
- biologické modely MeSH
- dimerizace MeSH
- fluorescenční spektrometrie MeSH
- fotosystém II (proteinový komplex) chemie metabolismus MeSH
- linkomycin farmakologie MeSH
- molekulární sekvence - údaje MeSH
- mutace genetika MeSH
- mutantní proteiny metabolismus MeSH
- podjednotky proteinů chemie metabolismus MeSH
- posttranslační úpravy proteinů * účinky léků účinky záření MeSH
- sekundární struktura proteinů MeSH
- sekvence aminokyselin MeSH
- světlo MeSH
- Synechocystis cytologie účinky léků metabolismus účinky záření MeSH
- tylakoidy účinky léků metabolismus účinky záření MeSH
- vztahy mezi strukturou a aktivitou MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- Názvy látek
- fotosystém II (proteinový komplex) MeSH
- linkomycin MeSH
- mutantní proteiny MeSH
- podjednotky proteinů MeSH