Nejvíce citovaný článek - PubMed ID 15935499
Fosfomycin is a well-known antibiotic that exhibits broad-spectrum activity against various bacterial pathogens, including gram-negative strains and some gram-positive strains such as staphylococci. The use of parenteral fosfomycin has been recently revised because the antibiotic has been found to effectively manage serious infections caused by multidrug-resistant pathogens. The occurrence of fosfomycin resistance could threaten the reintroduction of this antibiotic for the treatment of bacterial infections. In this study, a total of 24 fosfomycin-resistant Escherichia coli isolates obtained from urine samples were used to investigate the prevalence and molecular epidemiology of plasmid-mediated fosfomycin resistance genes. The replication origins of the conjugative and transformant plasmids obtained from the isolates were examined using the replication origin determination method based on the polymerase chain reaction (PCR). Through the PCR process performed with the fosA, fosA3, fosB, fosC, fosC2, and fosX genes to determine fosfomycin resistance, one out of 24 samples was found to be fosA3 gene-positive. A Class-1 integron gene was detected in three fosfomycin-resistant E. coli isolates, while no Class-2 integrons were detected in any isolate. The conjugation experiments demonstrated that the fosA3 gene was transferable in one isolate that also carried the blaTEM, blaCTX-M-15, and aac(6')-ib-cr genes. Through plasmid isolation in the transconjugant E. coli isolates, it was determined that the E. coli isolate FF21 carried fosfomycin resistance on the plasmid. To ensure the continued effective use of fosfomycin as a treatment option, fosfomycin resistance needs to be detected and closely monitored. Given the global rise in plasmid-transmissible genes, we anticipate a growing resistance to fosfomycin in the near future.
- Klíčová slova
- Escherichia coli, Antimicrobial resistance, FosA3, Fosfomycin, IncF, IncL/M,
- Publikační typ
- časopisecké články MeSH
BACKGROUND: FosA10-producing Enterobacterales have an extremely low incidence in Europe. PATIENTS AND METHODS: In March 2024, an 83-year-old woman, hospitalized in the Modena Province, developed an infection with fosfomycin-resistant Escherichia coli. The patient was treated with piperacillin/tazobactam and, after 10 days, the clinical picture was resolved. Fosfomycin MIC was evaluated with the reference agar dilution method and the production of FosA enzymes by phenotypic testing. Genomic characterization was assessed using long-read sequencing technology on the Sequel I platform. RESULTS: An E. coli isolate (FO_2) was collected from both blood and urine samples and showed high-level resistance to fosfomycin (MIC > 128 mg/L). The resistance to fosfomycin was ascribed to the production of FosA-like enzymes by phenotypic testing. The genomic analysis pointed to a FosA10-producing E. coli ST69. The fosA10 gene was carried by a highly conjugative IncB/O/K/Z plasmid that showed relevant similarities with other globally circulating plasmids. CONCLUSIONS: The acquisition of rare fosA-like genes in clinically relevant clones is concerning and the dissemination of FosA-producing E. coli should be continuously monitored.
- Publikační typ
- časopisecké články MeSH
Wastewaters belong among the most important sources of environmental pollution, including antibiotic-resistant bacteria. The aim of the study was to evaluate treated wastewaters as a possible transmission pathway for bacterial colonisation of gulls occupying the receiving river. A collection of antibiotic-resistant Escherichia coli originating both from treated municipal wastewaters discharged to the river Svratka (Czech Republic) and nestlings of Black-headed Gull (Chroicocephalus ridibundus) living 35 km downstream of the outlet was obtained using selective cultivation. Isolates were further characterised by various phenotyping and genotyping methods. From a total of 670 E. coli isolates (450 from effluents, 220 from gulls), 86 isolates (41 from effluents, 45 from gulls) showed identical antibiotic resistance phenotype and genotype and were further analysed for clonal relatedness using pulsed-field gel electrophoresis (PFGE). Despite the overall high diversity of the isolates, 21 isolates from both sources showed similar PFGE profiles. Isolates belonging to epidemiologically important sequence types (ST131, 15 isolates; ST23, three isolates) were subjected to whole-genome sequencing. Subsequent phylogenetic analysis did not reveal any close clonal relationship between the isolates from the effluents and gulls' nestlings with the closest strains showing 90 SNPs difference. Although our study did not provide direct evidence of transmission of antibiotic-resistant E. coli to wild gulls via treated wastewaters, we observed gull chicks as carriers of diverse multi-resistant E. coli, including high-risk clones, posing risk of further bacterial contamination of the surrounding environment.
- Klíčová slova
- Enterobacterales, Environment, Whole-genome sequencing, Wild birds,
- Publikační typ
- časopisecké články MeSH
Fosfomycin (FOS) is an effective antibiotic against multidrug-resistant Enterobacterales, but its effectiveness is reducing. Little is known on the current prevalence of FosA enzymes in low-risk pathogens, such as Citrobacter freundii. The aim of the study was the molecular characterization of a carbapenemase- and FosA-producing C. freundii collected in Italy. AK867, collected in 2023, showed an XDR profile, retaining susceptibility only to colistin. AK867 showed a FOS MIC >128 mg/L by ADM. Based on WGS, AK867 belonged to ST116 and owned a wide resistome, including fosA3, blaKPC-2, and blaVIM-1. fosA3 was carried by a conjugative pKPC-CAV1312 plasmid of 320,480 bp, on a novel composite transposon (12,907 bp). FosA3 transposon shared similarities with other fosA3-harboring pKPC-CAV1312 plasmids among Citrobacter spp. We report the first case of FosA3 production in clinical carbapenemase-producing C. freundii ST116. The incidence of FosA3 enzymes is increasing among Enterobacterales, affecting even low-virulence pathogens, as C. freundii.
- Klíčová slova
- Citrobacter freundii, carbapenemases, fosA3 gene, fosfomycin, fosfomycin resistance,
- MeSH
- antibakteriální látky * farmakologie MeSH
- bakteriální proteiny * genetika metabolismus MeSH
- beta-laktamasy * genetika metabolismus MeSH
- Citrobacter freundii * genetika enzymologie účinky léků MeSH
- enterobakteriální infekce * mikrobiologie MeSH
- fosfomycin * farmakologie MeSH
- lidé MeSH
- mikrobiální testy citlivosti MeSH
- mnohočetná bakteriální léková rezistence genetika MeSH
- plazmidy genetika MeSH
- sekvenování celého genomu MeSH
- transpozibilní elementy DNA MeSH
- Check Tag
- lidé MeSH
- Publikační typ
- časopisecké články MeSH
- Geografické názvy
- Itálie epidemiologie MeSH
- Názvy látek
- antibakteriální látky * MeSH
- bakteriální proteiny * MeSH
- beta-laktamasy * MeSH
- carbapenemase MeSH Prohlížeč
- fosfomycin * MeSH
- transpozibilní elementy DNA MeSH
Wild birds including raptors can act as vectors of clinically relevant bacteria with antibiotic resistance. The aim of this study was to investigate the occurrence of antibiotic-resistant Escherichia coli in black kites (Milvus migrans) inhabiting localities in proximity to human-influenced environments in southwestern Siberia and investigate their virulence and plasmid contents. A total of 51 E. coli isolates mostly with multidrug resistance (MDR) profiles were obtained from cloacal swabs of 35 (64%, n = 55) kites. Genomic analyses of 36 whole genome sequenced E. coli isolates showed: (i) high prevalence and diversity of their antibiotic resistance genes (ARGs) and common association with ESBL/AmpC production (27/36, 75%), (ii) carriage of mcr-1 for colistin resistance on IncI2 plasmids in kites residing in proximity of two large cities, (iii) frequent association with class one integrase (IntI1, 22/36, 61%), and (iv) presence of sequence types (STs) linked to avian-pathogenic (APEC) and extra-intestinal pathogenic E. coli (ExPEC). Notably, numerous isolates had significant virulence content. One E. coli with APEC-associated ST354 carried qnrE1 encoding fluoroquinolone resistance on IncHI2-ST3 plasmid, the first detection of such a gene in E. coli from wildlife. Our results implicate black kites in southwestern Siberia as reservoirs for antibiotic-resistant E. coli. It also highlights the existing link between proximity of wildlife to human activities and their carriage of MDR bacteria including pathogenic STs with significant and clinically relevant antibiotic resistance determinants. IMPORTANCE Migratory birds have the potential to acquire and disperse clinically relevant antibiotic-resistant bacteria (ARB) and their associated antibiotic resistance genes (ARGs) through vast geographical regions. The opportunistic feeding behavior associated with some raptors including black kites and the growing anthropogenic influence on their natural habitats increase the transmission risk of multidrug resistance (MDR) and pathogenic bacteria from human and agricultural sources into the environment and wildlife. Thus, monitoring studies investigating antibiotic resistance in raptors may provide essential data that facilitate understanding the fate and evolution of ARB and ARGs in the environment and possible health risks for humans and animals associated with the acquisition of these resistance determinants by wildlife.
- Klíčová slova
- APEC, Escherichia coli, ExPEC, IncHI2, IncI2, Milvus migrans, colistin resistance, mcr-1, qnrE1, wildlife,
- MeSH
- antagonisté receptorů pro angiotenzin MeSH
- antibakteriální látky farmakologie MeSH
- divoká zvířata MeSH
- Escherichia coli * MeSH
- inhibitory ACE MeSH
- lidé MeSH
- mnohočetná bakteriální léková rezistence genetika MeSH
- proteiny z Escherichia coli * genetika MeSH
- ptáci mikrobiologie MeSH
- zvířata MeSH
- Check Tag
- lidé MeSH
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- Geografické názvy
- Sibiř MeSH
- Názvy látek
- antagonisté receptorů pro angiotenzin MeSH
- antibakteriální látky MeSH
- inhibitory ACE MeSH
- proteiny z Escherichia coli * MeSH
Fosfomycin (FOS) has been recently reintroduced into clinical practice, but its effectiveness against multidrug-resistant (MDR) Enterobacterales is reduced due to the emergence of FOS resistance. The copresence of carbapenemases and FOS resistance could drastically limit antibiotic treatment. The aims of this study were (i) to investigate fosfomycin susceptibility profiles among carbapenem-resistant Enterobacterales (CRE) in the Czech Republic, (ii) to characterize the genetic environment of fosA genes among the collection, and (iii) to evaluate the presence of amino acid mutations in proteins involved in FOS resistance mechanisms. During the period from December 2018 to February 2022, 293 CRE isolates were collected from different hospitals in the Czech Republic. FOS MICs were assessed by the agar dilution method (ADM), FosA and FosC2 production was detected by the sodium phosphonoformate (PPF) test, and the presence of fosA-like genes was confirmed by PCR. Whole-genome sequencing was conducted with an Illumina NovaSeq 6000 system on selected strains, and the effect of point mutations in the FOS pathway was predicted using PROVEAN. Of these strains, 29% showed low susceptibility to fosfomycin (MIC, ≥16 μg/mL) by ADM. An NDM-producing Escherichia coli sequence type 648 (ST648) strain harbored a fosA10 gene on an IncK plasmid, while a VIM-producing Citrobacter freundii ST673 strain harbored a new fosA7 variant, designated fosA7.9. Analysis of mutations in the FOS pathway revealed several deleterious mutations occurring in GlpT, UhpT, UhpC, CyaA, and GlpR. Results regarding single substitutions in amino acid sequences highlighted a relationship between ST and specific mutations and an enhanced predisposition for certain STs to develop resistance. This study highlights the occurrence of several FOS resistance mechanisms in different clones spreading in the Czech Republic. IMPORTANCE Antimicrobial resistance (AMR) currently represents a concern for human health, and the reintroduction of antibiotics such as fosfomycin into clinical practice can provide further option in treatment of multidrug-resistant (MDR) bacterial infections. However, there is a global increase of fosfomycin-resistant bacteria, reducing its effectiveness. Considering this increase, it is crucial to monitor the spread of fosfomycin resistance in MDR bacteria in clinical settings and to investigate the resistance mechanism at the molecular level. Our study reports a large variety of fosfomycin resistance mechanisms among carbapenemase-producing Enterobacterales (CRE) in the Czech Republic. Our study summarizes the main achievements of our research on the use of molecular technologies, such as next-generation sequencing (NGS), to describe the heterogeneous mechanisms that reduce fosfomycin effectiveness in CRE. The results suggest that a program for widespread monitoring of fosfomycin resistance and epidemiology fosfomycin-resistant organisms can aide timely implementation of countermeasures to maintain the effectiveness of fosfomycin.
- Klíčová slova
- Enterobacterales, WGS, carbapenemase producers, drug-resistance bacteria, fosfomycin,
- MeSH
- antibakteriální látky farmakologie MeSH
- bakteriální léková rezistence genetika MeSH
- beta-laktamasy genetika MeSH
- Escherichia coli MeSH
- fosfomycin * farmakologie MeSH
- karbapenemy farmakologie MeSH
- lidé MeSH
- mikrobiální testy citlivosti MeSH
- Check Tag
- lidé MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- Geografické názvy
- Česká republika MeSH
- Názvy látek
- antibakteriální látky MeSH
- beta-laktamasy MeSH
- carbapenemase MeSH Prohlížeč
- fosfomycin * MeSH
- karbapenemy MeSH
The occurrence of colistin resistance has increased rapidly among Enterobacterales around the world. We performed a national survey of plasmid-mediated colistin resistance in human clinical isolates through a retrospective analysis of samples from 2009 to 2017 and a prospective sampling in 2018-2020. The aim of this study was to identify and characterize isolates with mcr genes from various regions of the Czech Republic using whole genome sequencing (WGS). Of all 1932 colistin-resistant isolates analyzed, 73 (3.8%) were positive for mcr genes. Most isolates carried mcr-1 (48/73) and were identified as Escherichia coli (n = 44) and Klebsiella pneumoniae (n = 4) of various sequence types (ST). Twenty-five isolates, including Enterobacter spp. (n = 24) and Citrobacter freundii (n = 1) carrying the mcr-9 gene were detected; three of them (Enterobacter kobei ST54) co-harbored the mcr-4 and mcr-9 genes. Multi-drug resistance phenotype was a common feature of mcr isolates and 14% (10/73) isolates also co-harbored clinically important beta-lactamases, including two isolates with carbapenemases KPC-2 and OXA-48. Phylogenetic analysis of E. coli ST744, the dominant genotype in this study, with the global collection showed Czech isolates belonged to two major clades, one containing isolates from Europe, while the second composed of isolates from diverse geographical areas. The mcr-1 gene was carried by IncX4 (34/73, 47%), IncHI2/ST4 (6/73, 8%) and IncI2 (8/73, 11%) plasmid groups. Small plasmids belonging to the ColE10 group were associated with mcr-4 in three isolates, while mcr-9 was carried by IncHI2/ST1 plasmids (4/73, 5%) or the chromosome (18/73, 25%). We showed an overall low level of occurrence of mcr genes in colistin-resistant bacteria from human clinical samples in the Czech Republic.
- Klíčová slova
- Enterobacterales, antibiotic resistance, human, mcr, plasmids,
- Publikační typ
- časopisecké články MeSH
Poultry represents a common source of bacteria with resistance to antibiotics including the critically important ones. Selective cultivation using colistin, cefotaxime and meropenem was performed for 66 chicken samples coming from 12 farms in Paraguay while two breeding companies supplied the farms. A total of 62 Escherichia coli and 22 Klebsiella pneumoniae isolates were obtained and representative isolates were subjected to whole-genome sequencing. Relatively high prevalence of phylogenetic group D and F was observed in E. coli isolates and several zoonotic sequence types (STs) including ST457 (14 isolates), ST38 (5), ST10 (2), ST117 (2) or ST93 (4) were detected. Isolates from three farms, which purchased chicken from a Paraguayan hatchery showed higher prevalence of mcr-5.1 and blaCTX-M-8 compared to the other nine farms, which purchased chickens from a Brazilian hatchery. Moreover, none of the K. pneumoniae isolates were linked to the Paraguayan hatchery. ESBL/AmpC and mcr-5-carrying multi-drug resistant (MDR) plasmids were characterized, and complete sequences were obtained for eight plasmids. The study shed light on Paraguayan poultry farms as a reservoir of antibiotic resistance commonly conferred via MDR plasmids and showed linkage between resistance and origin of the chickens at the hatcheries level.
- Klíčová slova
- E. coli, ESBL/AmpC, I1 plasmids, K. pneumoniae, colistin,
- Publikační typ
- časopisecké články MeSH
Escherichia coli ST216, including those that carry blaKPC-2, blaFOX-5, blaCTX-M-15 and mcr-1, have been linked to wild and urban-adapted birds and the colonisation of hospital environments causing recalcitrant, carbapenem-resistant human infections. Here we sequenced 22 multiple-drug resistant ST216 isolates from Australian silver gull chicks sampled from Five Islands, of which 21 carried nine or more antibiotic resistance genes including blaIMP-4 (n = 21), blaTEM-1b (n = 21), aac(3)-IId (n = 20), mph(A) (n = 20), catB3 (n = 20), sul1 (n = 20), aph(3")-Ib (n = 18) and aph(6)-Id (n = 18) on FIB(K) (n = 20), HI2-ST1 (n = 11) and HI2-ST3 (n = 10) plasmids. We show that (i) all HI2 plasmids harbour blaIMP-4 in resistance regions containing In809 flanked by IS26 (HI2-ST1) or IS15DI (HI2-ST3) and diverse metal resistance genes; (ii) HI2-ST1 plasmids are highly related to plasmids reported in diverse Enterobacteriaceae sourced from humans, companion animals and wildlife; (iii) HI2 were a feature of the Australian gull isolates and were not observed in international ST216 isolates. Phylogenetic analyses identified close relationships between ST216 from Australian gull and clinical isolates from overseas. E. coli ST216 from Australian gulls harbour HI2 plasmids encoding resistance to clinically important antibiotics and metals. Our studies underscore the importance of adopting a one health approach to AMR and pathogen surveillance.
- Klíčová slova
- Australian silver gull, Chroicocephalus novaehollandiae, ST216, anthropogenic pollution, urban birds, whole genome sequencing, wildlife,
- Publikační typ
- časopisecké články MeSH
The aim of this study was to report the characterization of the first mcr-positive Enterobacterales isolated from Czech hospitals. In 2019, one Citrobacter freundii and four Enterobacter isolates were recovered from Czech hospitals. The production of carbapenemases was examined by a matrix-assisted laser desorption ionization-time of flight mass spectrometry (MALDI-TOF MS) imipenem hydrolysis assay. Additionally, bacteria were screened for the presence of carbapenemase-encoding genes and plasmid-mediated colistin resistance genes by PCR. To define the genetic units carrying mcr genes, the genomic DNAs of mcr-carrying clinical isolates were sequenced on the PacBio Sequel I platform. Results showed that all isolates carried blaVIM- and mcr-like genes. Analysis of whole-genome sequencing (WGS) data revealed that all isolates carried mcr-9-like alleles. Furthermore, the three sequence type 106 (ST106) Enterobacter hormaechei isolates harbored the blaVIM-1 gene, while the ST764 E. hormaechei and ST95 C. freundii included blaVIM-4 Analysis of plasmid sequences showed that, in all isolates, mcr-9 was carried on IncHI2 plasmids. Additionally, at least one multidrug resistance (MDR) region was identified in each mcr-9-carrying IncHI2 plasmid. The blaVIM-4 gene was found in the MDR regions of p48880_MCR_VIM and p51929_MCR_VIM. In the three remaining isolates, blaVIM-1 was localized on plasmids (∼55 kb) exhibiting repA-like sequences 99% identical to the respective gene of pKPC-CAV1193. In conclusion, to the best of our knowledge, these 5 isolates were the first mcr-9-positive bacteria of clinical origin identified in the Czech Republic. Additionally, the carriage of the blaVIM-1 on pKPC-CAV1193-like plasmids is described for the first time. Thus, our findings underline the ongoing evolution of mobile elements implicated in the dissemination of clinically important resistance determinants.IMPORTANCE Infections caused by carbapenemase-producing bacteria have led to the revival of polymyxins as the "last-resort" antibiotic. Since 2016, several reports describing the presence of plasmid-mediated colistin resistance genes, mcr, in different host species and geographic areas were published. Here, we report the first detection of Enterobacterales carrying mcr-9-like alleles isolated from Czech hospitals in 2019. Furthermore, the three ST106 Enterobacter hormaechei isolates harbored blaVIM-1, while the ST764 E. hormaechei and ST95 Citrobacter freundii isolates included blaVIM-4 Analysis of WGS data showed that, in all isolates, mcr-9 was carried on IncHI2 plasmids. blaVIM-4 was found in the MDR regions of IncHI2 plasmids, while blaVIM-1 was localized on pKPC-CAV1193-like plasmids, described here for the first time. These findings underline the ongoing evolution of mobile elements implicated in dissemination of clinically important resistance determinants. Thus, WGS characterization of MDR bacteria is crucial to unravel the mechanisms involved in dissemination of resistance mechanisms.
- Klíčová slova
- Citrobacter freundii, Enterobacter cloacae, IncHI2, MCR-9, VIM-4,
- MeSH
- antibakteriální látky farmakologie terapeutické užití MeSH
- bakteriální proteiny genetika MeSH
- beta-laktamasy genetika MeSH
- Enterobacter genetika izolace a purifikace MeSH
- lidé MeSH
- nemocnice MeSH
- plazmidy genetika MeSH
- Check Tag
- lidé MeSH
- Publikační typ
- časopisecké články MeSH
- multicentrická studie MeSH
- práce podpořená grantem MeSH
- Geografické názvy
- Česká republika MeSH
- Názvy látek
- antibakteriální látky MeSH
- bakteriální proteiny MeSH
- beta-laktamasy MeSH