Nejvíce citovaný článek - PubMed ID 15935701
Anterior gradient 2 (AGR2) is an endoplasmic reticulum (ER)-resident protein disulfide isomerase (PDI) known to be overexpressed in many human epithelial cancers and is involved in cell migration, cellular transformation, angiogenesis, and metastasis. This protein inhibits the activity of the tumor suppressor p53, and its expression levels can be used to predict cancer patient outcome. However, the precise network of AGR2-interacting partners and clients remains to be fully characterized. Herein, we used label-free quantification and also stable isotope labeling with amino acids in cell culture-based LC-MS/MS analyses to identify proteins interacting with AGR2. Functional annotation confirmed that AGR2 and its interaction partners are associated with processes in the ER that maintain intracellular metabolic homeostasis and participate in the unfolded protein response, including those associated with changes in cellular metabolism, energy, and redox states in response to ER stress. As a proof of concept, the interaction between AGR2 and PDIA3, another ER-resident PDI, was studied in more detail. Pathway analysis revealed that AGR2 and PDIA3 play roles in protein folding in ER, including post-translational modification and in cellular response to stress. We confirmed the AGR2-PDIA3 complex formation in cancer cells, which was enhanced in response to ER stress. Accordingly, molecular docking characterized potential quaternary structure of this complex; however, it remains to be elucidated whether AGR2 rather contributes to PDIA3 maturation in ER, the complex directly acts in cellular signaling, or mediates AGR2 secretion. Our study provides a comprehensive insight into the protein-protein interaction network of AGR2 by identifying functionally relevant proteins and related cellular and biochemical pathways associated with the role of AGR2 in cancer cells.
- Klíčová slova
- anterior gradient protein 2, mass spectrometry, protein disulfide isomerase, protein–protein interactions, secretory pathway,
- MeSH
- chromatografie kapalinová MeSH
- lidé MeSH
- mapy interakcí proteinů MeSH
- mukoproteiny * metabolismus MeSH
- nádory * MeSH
- onkogenní proteiny * metabolismus MeSH
- proteindisulfidisomerasy * MeSH
- simulace molekulového dockingu MeSH
- tandemová hmotnostní spektrometrie MeSH
- Check Tag
- lidé MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- Názvy látek
- AGR2 protein, human MeSH Prohlížeč
- mukoproteiny * MeSH
- onkogenní proteiny * MeSH
- proteindisulfidisomerasy * MeSH
The detection of cancer antigens is a major aim of cancer research in order to develop better patient management through early disease detection. Many cancers including prostate, lung, and ovarian secrete a protein disulfide isomerase protein named AGR2 that has been previously detected in urine and plasma using mass spectrometry. Here we determine whether a previously developed monoclonal antibody targeting AGR2 can be adapted from an indirect two-site ELISA format into a direct detector using solid-phase printed gold electrodes. The screen-printed gold electrode was surface functionalized with the anti-AGR2 specific monoclonal antibody. The interaction of the recombinant AGR2 protein and the anti-AGR2 monoclonal antibody functionalized electrode changed its electrochemical impedance spectra. Nyquist diagrams were obtained after incubation in an increasing concentration of purified AGR2 protein with a range of concentrations from 0.01 fg/mL to 10 fg/mL. In addition, detection of the AGR2 antigen can be achieved from cell lysates in medium or artificial buffer. These data highlight the utility of an AGR2-specific monoclonal antibody that can be functionalized onto a gold printed electrode for a one-step capture and quantitation of the target antigen. These platforms have the potential for supporting methodologies using more complex bodily fluids including plasma and urine for improved cancer diagnostics.
- Klíčová slova
- AGR2 protein, electrochemical impedance spectroscopy, screen-printed gold electrode, sensor,
- MeSH
- biosenzitivní techniky * MeSH
- elektrochemické techniky MeSH
- elektrody MeSH
- kovové nanočástice MeSH
- lidé MeSH
- limita detekce MeSH
- monoklonální protilátky MeSH
- mukoproteiny analýza MeSH
- nádory MeSH
- onkogenní proteiny analýza MeSH
- zlato MeSH
- Check Tag
- lidé MeSH
- Publikační typ
- časopisecké články MeSH
- Názvy látek
- AGR2 protein, human MeSH Prohlížeč
- monoklonální protilátky MeSH
- mukoproteiny MeSH
- onkogenní proteiny MeSH
- zlato MeSH
Anterior gradient 2 (AGR2) is a dimeric protein disulfide isomerase family member involved in the regulation of protein quality control in the endoplasmic reticulum (ER). Mouse AGR2 deletion increases intestinal inflammation and promotes the development of inflammatory bowel disease (IBD). Although these biological effects are well established, the underlying molecular mechanisms of AGR2 function toward inflammation remain poorly defined. Here, using a protein-protein interaction screen to identify cellular regulators of AGR2 dimerization, we unveiled specific enhancers, including TMED2, and inhibitors of AGR2 dimerization, that control AGR2 functions. We demonstrate that modulation of AGR2 dimer formation, whether enhancing or inhibiting the process, yields pro-inflammatory phenotypes, through either autophagy-dependent processes or secretion of AGR2, respectively. We also demonstrate that in IBD and specifically in Crohn's disease, the levels of AGR2 dimerization modulators are selectively deregulated, and this correlates with severity of disease. Our study demonstrates that AGR2 dimers act as sensors of ER homeostasis which are disrupted upon ER stress and promote the secretion of AGR2 monomers. The latter might represent systemic alarm signals for pro-inflammatory responses.
- Klíčová slova
- AGR2, TMED2, endoplasmic reticulum, inflammation, proteostasis,
- MeSH
- endoplazmatické retikulum genetika metabolismus MeSH
- HEK293 buňky MeSH
- homeostáze proteinů * MeSH
- lidé MeSH
- mukoproteiny genetika metabolismus MeSH
- multimerizace proteinu * MeSH
- myši MeSH
- onkogenní proteiny genetika metabolismus MeSH
- stres endoplazmatického retikula * MeSH
- zvířata MeSH
- Check Tag
- lidé MeSH
- mužské pohlaví MeSH
- myši MeSH
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- Názvy látek
- AGR2 protein, human MeSH Prohlížeč
- Agr2 protein, mouse MeSH Prohlížeč
- mukoproteiny MeSH
- onkogenní proteiny MeSH
AGR2 is an oncogenic endoplasmic reticulum (ER)-resident protein disulfide isomerase. AGR2 protein has a relatively unique property for a chaperone in that it can bind sequence-specifically to a specific peptide motif (TTIYY). A synthetic TTIYY-containing peptide column was used to affinity-purify AGR2 from crude lysates highlighting peptide selectivity in complex mixtures. Hydrogen-deuterium exchange mass spectrometry localized the dominant region in AGR2 that interacts with the TTIYY peptide to within a structural loop from amino acids 131-135 (VDPSL). A peptide binding site consensus of Tx[IL][YF][YF] was developed for AGR2 by measuring its activity against a mutant peptide library. Screening the human proteome for proteins harboring this motif revealed an enrichment in transmembrane proteins and we focused on validating EpCAM as a potential AGR2-interacting protein. AGR2 and EpCAM proteins formed a dose-dependent protein-protein interaction in vitro Proximity ligation assays demonstrated that endogenous AGR2 and EpCAM protein associate in cells. Introducing a single alanine mutation in EpCAM at Tyr251 attenuated its binding to AGR2 in vitro and in cells. Hydrogen-deuterium exchange mass spectrometry was used to identify a stable binding site for AGR2 on EpCAM, adjacent to the TLIYY motif and surrounding EpCAM's detergent binding site. These data define a dominant site on AGR2 that mediates its specific peptide-binding function. EpCAM forms a model client protein for AGR2 to study how an ER-resident chaperone can dock specifically to a peptide motif and regulate the trafficking a protein destined for the secretory pathway.
- MeSH
- adhezní molekula epiteliálních buněk genetika metabolismus MeSH
- lidé MeSH
- MFC-7 buňky MeSH
- mukoproteiny MeSH
- onkogenní proteiny MeSH
- peptidy metabolismus MeSH
- proteiny genetika metabolismus MeSH
- protoonkogenní proteiny c-mdm2 metabolismus MeSH
- rekombinantní proteiny metabolismus MeSH
- vazba proteinů MeSH
- Check Tag
- lidé MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- Názvy látek
- adhezní molekula epiteliálních buněk MeSH
- AGR2 protein, human MeSH Prohlížeč
- EPCAM protein, human MeSH Prohlížeč
- MDM2 protein, human MeSH Prohlížeč
- mukoproteiny MeSH
- onkogenní proteiny MeSH
- peptidy MeSH
- proteiny MeSH
- protoonkogenní proteiny c-mdm2 MeSH
- rekombinantní proteiny MeSH
BACKGROUND: During cancer progression, epithelial cancer cells can be reprogrammed into mesenchymal-like cells with increased migratory potential through the process of epithelial-mesenchymal transition (EMT), representing an essential step of tumor progression towards metastatic state. AGR2 protein was shown to regulate several cancer-associated processes including cellular proliferation, survival and drug resistance. METHODS: The expression of AGR2 was analyzed in cancer cell lines exposed to TGF-β alone or to combined treatment with TGF-β and the Erk1/2 inhibitor PD98059 or the TGF-β receptor specific inhibitor SB431542. The impact of AGR2 silencing by specific siRNAs or CRISPR/Cas9 technology on EMT was investigated by western blot analysis, quantitative PCR, immunofluorescence analysis, real-time invasion assay and adhesion assay. RESULTS: Induction of EMT was associated with decreased AGR2 along with changes in cellular morphology, actin reorganization, inhibition of E-cadherin and induction of the mesenchymal markers vimentin and N-cadherin in various cancer cell lines. Conversely, induction of AGR2 caused reversion of the mesenchymal phenotype back to the epithelial phenotype and re-acquisition of epithelial markers. Activated Smad and Erk signaling cascades were identified as mutually complementary pathways responsible for TGF-β-mediated inhibition of AGR2. CONCLUSION: Taken together our results highlight a crucial role for AGR2 in maintaining the epithelial phenotype by preventing the activation of key factors involved in the process of EMT.
- Klíčová slova
- AGR2, E-cadherin, EMT, Metastasis, TGF-β, Vimentin,
- MeSH
- buněčná adheze genetika MeSH
- epitelo-mezenchymální tranzice účinky léků genetika MeSH
- genový knockdown MeSH
- kadheriny metabolismus MeSH
- lidé MeSH
- mukoproteiny MeSH
- nádorové buněčné linie MeSH
- onkogenní proteiny MeSH
- pohyb buněk genetika MeSH
- proteiny Smad metabolismus MeSH
- proteiny genetika MeSH
- regulace genové exprese u nádorů účinky léků MeSH
- signální transdukce účinky léků MeSH
- transformující růstový faktor beta farmakologie MeSH
- vimentin metabolismus MeSH
- Check Tag
- lidé MeSH
- Publikační typ
- časopisecké články MeSH
- Názvy látek
- AGR2 protein, human MeSH Prohlížeč
- kadheriny MeSH
- mukoproteiny MeSH
- onkogenní proteiny MeSH
- proteiny Smad MeSH
- proteiny MeSH
- transformující růstový faktor beta MeSH
- vimentin MeSH