Nejvíce citovaný článek - PubMed ID 16403785
The aim of the present study was to assess the long-term outcomes of women 3-to-11 years postpartum in relation to the previous occurrence of pregnancy-related complications such as gestational hypertension (GH), preeclampsia (PE) and fetal growth restriction (FGR). Body mass index (BMI), waist circumference values, the average values of systolic (SBP) and diastolic (DBP) blood pressures and heart rate, total serum cholesterol levels, serum HDL (high-density lipoprotein) cholesterol levels, serum LDL (low-density lipoprotein) cholesterol levels, serum triglycerides levels, serum lipoprotein A levels, serum CRP (C-reactive protein) levels, plasma homocysteine levels, serum uric acid levels, individual and relative risks of having a heart attack or stroke over the next ten years were compared between groups (50 GH, 102 PE, 34 FGR and 90 normal pregnancies) and correlated with the severity of the disease with regard to clinical signs (25 PE without severe features, 77 PE with severe features), and delivery date (36 early PE, 66 late PE). The adjustment for potential covariates was made, where appropriate. At 3-11 years follow-up women with a history of GH, PE regardless of the severity of the disease and the delivery date, PE without severe features, PE with severe features, early PE, and late PE had higher BMI, waist circumferences, SBP, DBP, and predicted 10-year cardiovascular event risk when compared with women with a history of normotensive term pregnancy. In addition, increased serum levels of uric acid were found in patients previously affected with GH, PE regardless of the severity of the disease and the delivery date, PE with severe features, early PE, and late PE. Higher serum levels of lipoprotein A were found in patients previously affected with early PE. The receiver operating characteristic (ROC) curve analyses were able to identify a substantial proportion of women previously affected with GH or PE with a predisposition to later onset of cardiovascular diseases. Women with a history of GH and PE represent a risky group of patients that may benefit from implementation of early primary prevention strategies.
AIMS: The aims of the study were, first, to critically evaluate lipoprotein(a) [Lp(a)] as a cardiovascular risk factor and, second, to advise on screening for elevated plasma Lp(a), on desirable levels, and on therapeutic strategies. METHODS AND RESULTS: The robust and specific association between elevated Lp(a) levels and increased cardiovascular disease (CVD)/coronary heart disease (CHD) risk, together with recent genetic findings, indicates that elevated Lp(a), like elevated LDL-cholesterol, is causally related to premature CVD/CHD. The association is continuous without a threshold or dependence on LDL- or non-HDL-cholesterol levels. Mechanistically, elevated Lp(a) levels may either induce a prothrombotic/anti-fibrinolytic effect as apolipoprotein(a) resembles both plasminogen and plasmin but has no fibrinolytic activity, or may accelerate atherosclerosis because, like LDL, the Lp(a) particle is cholesterol-rich, or both. We advise that Lp(a) be measured once, using an isoform-insensitive assay, in subjects at intermediate or high CVD/CHD risk with premature CVD, familial hypercholesterolaemia, a family history of premature CVD and/or elevated Lp(a), recurrent CVD despite statin treatment, ≥3% 10-year risk of fatal CVD according to European guidelines, and/or ≥10% 10-year risk of fatal + non-fatal CHD according to US guidelines. As a secondary priority after LDL-cholesterol reduction, we recommend a desirable level for Lp(a) <80th percentile (less than ∼50 mg/dL). Treatment should primarily be niacin 1-3 g/day, as a meta-analysis of randomized, controlled intervention trials demonstrates reduced CVD by niacin treatment. In extreme cases, LDL-apheresis is efficacious in removing Lp(a). CONCLUSION: We recommend screening for elevated Lp(a) in those at intermediate or high CVD/CHD risk, a desirable level <50 mg/dL as a function of global cardiovascular risk, and use of niacin for Lp(a) and CVD/CHD risk reduction.
- MeSH
- časná diagnóza MeSH
- hyperlipoproteinemie diagnóza genetika terapie MeSH
- imunoanalýza metody MeSH
- kardiovaskulární nemoci krev genetika prevence a kontrola MeSH
- koronární nemoc krev genetika prevence a kontrola MeSH
- lidé MeSH
- lipoprotein (a) krev genetika MeSH
- myši transgenní MeSH
- myši MeSH
- rizikové faktory MeSH
- sexuální faktory MeSH
- věkové faktory MeSH
- výběr pacientů MeSH
- zvířata MeSH
- Check Tag
- lidé MeSH
- mužské pohlaví MeSH
- myši MeSH
- ženské pohlaví MeSH
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- konsensus - konference MeSH
- práce podpořená grantem MeSH
- Názvy látek
- lipoprotein (a) MeSH