Nejvíce citovaný článek - PubMed ID 17381274
Purple photosynthetic bacteria (PPB) are versatile microorganisms capable of producing various value-added chemicals, e.g., biopolymers and biofuels. They employ diverse metabolic pathways, allowing them to adapt to various growth conditions and even extreme environments. Thus, they are ideal organisms for the Next Generation Industrial Biotechnology concept of reducing the risk of contamination by using naturally robust extremophiles. Unfortunately, the potential of PPB for use in biotechnology is hampered by missing knowledge on regulations of their metabolism. Although Rhodospirillum rubrum represents a model purple bacterium studied for polyhydroxyalkanoate and hydrogen production, light/chemical energy conversion, and nitrogen fixation, little is known regarding the regulation of its metabolism at the transcriptomic level. Using RNA sequencing, we compared gene expression during the cultivation utilizing fructose and acetate as substrates in case of the wild-type strain R. rubrum DSM 467T and its knock-out mutant strain that is missing two polyhydroxyalkanoate synthases PhaC1 and PhaC2. During this first genome-wide expression study of R. rubrum, we were able to characterize cultivation-driven transcriptomic changes and to annotate non-coding elements as small RNAs.
- Klíčová slova
- Acetate, Depolymerase knock-out, Fructose, Gene ontology, Genome, Metabolism, Polyhydroxyalkanoates, RNA-Seq, Rhodospirillum rubrum, Transcriptome,
- Publikační typ
- časopisecké články MeSH
Bordetella pertussis is the causative agent of human whooping cough, a highly contagious respiratory disease which despite vaccination programs remains the major cause of infant morbidity and mortality. The requirement of the RNA chaperone Hfq for virulence of B. pertussis suggested that Hfq-dependent small regulatory RNAs are involved in the modulation of gene expression. High-throughput RNA sequencing revealed hundreds of putative noncoding RNAs including the RgtA sRNA. Abundance of RgtA is strongly decreased in the absence of the Hfq protein and its expression is modulated by the activities of the two-component regulatory system BvgAS and another response regulator RisA. Whereas RgtA levels were elevated under modulatory conditions or in the absence of bvg genes, deletion of the risA gene completely abolished RgtA expression. Profiling of the ΔrgtA mutant in the ΔbvgA genetic background identified the BP3831 gene encoding a periplasmic amino acid-binding protein of an ABC transporter as a possible target gene. The results of site-directed mutagenesis and in silico analysis indicate that RgtA base-pairs with the region upstream of the start codon of the BP3831 mRNA and thereby weakens the BP3831 protein production. Furthermore, our data suggest that the function of the BP3831 protein is related to transport of glutamate, an important metabolite in the B. pertussis physiology. We propose that the BvgAS/RisA interplay regulates the expression of RgtA which upon infection, when glutamate might be scarce, attenuates translation of the glutamate transporter and thereby assists in adaptation of the pathogen to other sources of energy.
- Klíčová slova
- Bordetella, riboregulation, sRNA, signal transduction, translational repression,
- MeSH
- bakteriální proteiny genetika metabolismus MeSH
- Bordetella pertussis genetika metabolismus MeSH
- glutamáty metabolismus MeSH
- lidé MeSH
- malá nekódující RNA genetika MeSH
- regulace genové exprese u bakterií MeSH
- signální transdukce * MeSH
- Check Tag
- lidé MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- Názvy látek
- bakteriální proteiny MeSH
- glutamáty MeSH
- malá nekódující RNA MeSH
Bordetella pertussis is a Gram-negative pathogen causing the human respiratory disease called pertussis or whooping cough. Here we examined the role of the RNA chaperone Hfq in B. pertussis virulence. Hfq mediates interactions between small regulatory RNAs and their mRNA targets and thus plays an important role in posttranscriptional regulation of many cellular processes in bacteria, including production of virulence factors. We characterized an hfq deletion mutant (Δhfq) of B. pertussis 18323 and show that the Δhfq strain produces decreased amounts of the adenylate cyclase toxin that plays a central role in B. pertussis virulence. Production of pertussis toxin and filamentous hemagglutinin was affected to a lesser extent. In vitro, the ability of the Δhfq strain to survive within macrophages was significantly reduced compared to that of the wild-type (wt) strain. The virulence of the Δhfq strain in the mouse respiratory model of infection was attenuated, with its capacity to colonize mouse lungs being strongly reduced and its 50% lethal dose value being increased by one order of magnitude over that of the wt strain. In mixed-infection experiments, the Δhfq strain was then clearly outcompeted by the wt strain. This requirement for Hfq suggests involvement of small noncoding RNA regulation in B. pertussis virulence.
- MeSH
- analýza přežití MeSH
- bakteriální nálož MeSH
- Bordetella pertussis genetika patogenita MeSH
- delece genu MeSH
- faktory virulence genetika metabolismus MeSH
- LD50 MeSH
- modely nemocí na zvířatech MeSH
- myši MeSH
- pertuse mikrobiologie patologie MeSH
- pertusový toxin metabolismus MeSH
- plíce mikrobiologie MeSH
- protein hostitelského faktoru 1 genetika metabolismus MeSH
- regulace genové exprese u bakterií MeSH
- virulence MeSH
- zvířata MeSH
- Check Tag
- myši MeSH
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- Názvy látek
- faktory virulence MeSH
- pertusový toxin MeSH
- protein hostitelského faktoru 1 MeSH