Nejvíce citovaný článek - PubMed ID 17426809
Arecaceae (palms) constitute a highly diversified family of monocots, distributed especially in tropical and subtropical areas, including approximately 2600 species and 180 genera. Palms originated by the end of the Early Cretaceous, with most genus-level cladogenetic events occurring from the Eocene and Oligocene onward. Meligethinae (pollen beetles) are a large subfamily of Nitidulidae (Coleoptera), including just under 700 described species, and some 50 genera. Meligethinae are widespread in the Palearctic, Afrotropical, and Oriental Regions. All meligethine species are associated with flowers or inflorescences of several plant families, both dicots (the great majority) and monocots (around 7%); approximately 80% of known species are thought to be monophagous or strictly oligophagous at the larval stage. The origin of Meligethinae is debated, although combined paleontological, paleogeographical, and molecular evidence suggests placing it somewhere in the Paleotropics around the Eocene-Oligocene boundary, ca. 35-40 Mya. This article reviews the insect-host plant relationships of all known genera and species of Meligethinae associated with Arecaceae, currently including some 40 species and just under ten genera (including a possibly new African one). The role of adults as effective and important pollinators of their host palms (also in terms of provided ecosystem services) has been demonstrated in some common palm species. All Meligethinae living on palms show rather close phylogenetic relationships with one another and with the mainly Eastern Palearctic genus Meligethes Stephens, 1830 and related genera (associated with dicots of the families Rosaceae, Brassicaceae, or Cleomaceae). Molecular data suggests that the palm-associated Paleotropical genus Meligethinus Grouvelle, 1906 constitutes the sister-group of Meligethes and allied genera. Some hypotheses are presented on the evolution of Meligethinae associated with palms and their probably rather recent (early Miocene-Pleistocene) radiation on their host plants. Meligethinae likely radiated on palms long after the diversification of their hosts, and their recent evolution was driven by repeated radiation on pre-existing and diverse palm taxa, rather than ancient host associations and coevolution. Finally, this article also briefly summarized the relationships that other unrelated groups of Nitidulidae have established with palms around the world.
Galerucinae s. str. is a rich group of leaf beetles. A new, up-to date checklist of Galerucinae genera in the world is provided, including the number of valid species of each genus. Genera and species were counted in literature published before the end of 2016. In summary, 7145 species (7132 recent, 13 fossils) and 192 subspecies from 543 genera (542 recent, 1 fossil) were quantified in Galerucinae s. str. In comparison with the previous catalogue of worldwide Galerucinae (Wilcox 1971-1973), an additional 91 valid genera, 1341 valid species (1337 recent, 4 fossils) and 38 subspecies have been published; 43 genera were synonymized, four genera were transferred into Alticini, two subgenera were elevated to genus rank, and one genus was downgraded to subgenus rank. The updated list of references to taxonomic publications on Galerucinae s. str. from the period 1971-2016 is provided.
- Klíčová slova
- Biodiversity, Chrysomeloidea, checklist, leaf beetles, worldwide,
- Publikační typ
- časopisecké články MeSH
- přehledy MeSH
The evolutionary success of beetles and numerous other terrestrial insects is generally attributed to co-radiation with flowering plants but most studies have focused on herbivorous or pollinating insects. Non-herbivores represent a significant proportion of beetle diversity yet potential factors that influence their diversification have been largely unexamined. In the present study, we examine the factors driving diversification within the Scarabaeidae, a speciose beetle family with a range of both herbivorous and non-herbivorous ecologies. In particular, it has been long debated whether the key event in the evolution of dung beetles (Scarabaeidae: Scarabaeinae) was an adaptation to feeding on dinosaur or mammalian dung. Here we present molecular evidence to show that the origin of dung beetles occurred in the middle of the Cretaceous, likely in association with dinosaur dung, but more surprisingly the timing is consistent with the rise of the angiosperms. We hypothesize that the switch in dinosaur diet to incorporate more nutritious and less fibrous angiosperm foliage provided a palatable dung source that ultimately created a new niche for diversification. Given the well-accepted mass extinction of non-avian dinosaurs at the Cretaceous-Paleogene boundary, we examine a potential co-extinction of dung beetles due to the loss of an important evolutionary resource, i.e., dinosaur dung. The biogeography of dung beetles is also examined to explore the previously proposed "out of Africa" hypothesis. Given the inferred age of Scarabaeinae as originating in the Lower Cretaceous, the major radiation of dung feeders prior to the Cenomanian, and the early divergence of both African and Gondwanan lineages, we hypothesise that that faunal exchange between Africa and Gondwanaland occurred during the earliest evolution of the Scarabaeinae. Therefore we propose that both Gondwanan vicariance and dispersal of African lineages is responsible for present day distribution of scarabaeine dung beetles and provide examples.
- MeSH
- biodiverzita MeSH
- biologická evoluce * MeSH
- brouci * MeSH
- dinosauři * MeSH
- ekologie MeSH
- extinkce biologická * MeSH
- feces MeSH
- fylogeneze MeSH
- Magnoliopsida MeSH
- sekvenční analýza DNA MeSH
- zkameněliny MeSH
- zvířata MeSH
- Check Tag
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
In spite of the growth of molecular ecology, systematics and next-generation sequencing, the discovery and analysis of diversity is not currently integrated with building the tree-of-life. Tropical arthropod ecologists are well placed to accelerate this process if all specimens obtained through mass-trapping, many of which will be new species, could be incorporated routinely into phylogeny reconstruction. Here we test a shotgun sequencing approach, whereby mitochondrial genomes are assembled from complex ecological mixtures through mitochondrial metagenomics, and demonstrate how the approach overcomes many of the taxonomic impediments to the study of biodiversity. DNA from approximately 500 beetle specimens, originating from a single rainforest canopy fogging sample from Borneo, was pooled and shotgun sequenced, followed by de novo assembly of complete and partial mitogenomes for 175 species. The phylogenetic tree obtained from this local sample was highly similar to that from existing mitogenomes selected for global coverage of major lineages of Coleoptera. When all sequences were combined only minor topological changes were induced against this reference set, indicating an increasingly stable estimate of coleopteran phylogeny, while the ecological sample expanded the tip-level representation of several lineages. Robust trees generated from ecological samples now enable an evolutionary framework for ecology. Meanwhile, the inclusion of uncharacterized samples in the tree-of-life rapidly expands taxon and biogeographic representation of lineages without morphological identification. Mitogenomes from shotgun sequencing of unsorted environmental samples and their associated metadata, placed robustly into the phylogenetic tree, constitute novel DNA "superbarcodes" for testing hypotheses regarding global patterns of diversity.
- Klíčová slova
- Coleoptera, Illumina MiSeq, biodiversity, bulk samples, community ecology, metagenome skimming, mitochondrial genomes, mitochondrial metagenomics, phylogeny, tree-of-life,
- MeSH
- brouci genetika MeSH
- deštný prales MeSH
- frekvence genu MeSH
- fylogeneze MeSH
- genetická variace MeSH
- genom mitochondriální MeSH
- hmyzí geny MeSH
- kontigové mapování MeSH
- metagenom MeSH
- mitochondrie genetika MeSH
- sekvenční analýza DNA MeSH
- vysoce účinné nukleotidové sekvenování MeSH
- zvířata MeSH
- Check Tag
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- Geografické názvy
- Borneo MeSH