Most cited article - PubMed ID 18062180
Piezoelectric immunosensor for the direct and rapid detection of Francisella tularensis
Piezoelectric biosensors are a group of analytical devices working on a principle of affinity interaction recording. A piezoelectric platform or piezoelectric crystal is a sensor part working on the principle of oscillations change due to a mass bound on the piezoelectric crystal surface. In this review, biosensors having their surface modified with an antibody or antigen, with a molecularly imprinted polymer, with genetic information like single stranded DNA, and biosensors with bound receptors of organic of biochemical origin, are presented and discussed. The mentioned recognition parts are frequently combined with use of nanoparticles and applications in this way are also introduced. An overview of the current literature is given and the methods presented are commented upon.
- Keywords
- QCM, acoustic sensor, affinity, anisotropy, biosensor, immunosensor, label free, oscillation, piezoelectric, quartz crystal microbalance,
- Publication type
- Journal Article MeSH
- Review MeSH
Francisella tularensis is capable to modulate immunobiological activities of the host cells. We focused on the expression of ICAM-1 (CD54) on J774.2 mouse macrophage cell line infected by F. tularensis live vaccine strain (LVS) in vitro as a putative marker of subsequent elimination of infection. J774.2 cell line cells were infected by F. tularensis LVS strain (multiplicity of infection, 1:100). Cell cultures were stimulated either 3 h before infection or 3 h after infection by either lipopolysaccharide (LPS) or interferon γ (IFN-γ). The expression of ICAM-1 was determined by flow cytometry 6 h after infection. The intensity of ICAM-1 expression after 6 h of J774.2 macrophage cells infection by F. tularensis is very sensitive indicator of the effective macrophages stimulation resulting in the elimination of F. tularensis infection. The mean fluorescence intensity MFI = 49.8 is set-up by our experiments as a reliable threshold of the effective elimination of F. tularensis experimental infection with 83.3% sensitivity and 96.7% specificity, respectively. Simultaneous stimulation of J774.2 macrophage cells by LPS and IFN-γ was essential to elicit the elimination of F. tularensis infection. The ICAM-1 expression determined by flow cytometry can be considered to be highly sensitive and specific approach to predict elimination of F. tularensis infection by J774.2 macrophages.
- MeSH
- Macrophage Activation * MeSH
- Cell Line MeSH
- Francisella tularensis immunology MeSH
- Interferon-gamma immunology MeSH
- Lipopolysaccharides immunology MeSH
- Macrophages immunology microbiology MeSH
- Intercellular Adhesion Molecule-1 biosynthesis MeSH
- Mice, Inbred BALB C MeSH
- Mice MeSH
- Flow Cytometry MeSH
- Tularemia immunology MeSH
- Animals MeSH
- Check Tag
- Mice MeSH
- Animals MeSH
- Publication type
- Journal Article MeSH
- Research Support, Non-U.S. Gov't MeSH
- Names of Substances
- Interferon-gamma MeSH
- Lipopolysaccharides MeSH
- Intercellular Adhesion Molecule-1 MeSH
Mutual interactions were investigated between intracellular parasitic bacterium Francisella tularensis (F.t.; highly virulent bacterium responsible for tularemia, replicating within the host macrophages) and murine macrophage-like cell line J774. Recombinant murine lymphokine INF-gamma and/or LPS derived from E. coli were determined to stimulate in vitro antimicrobial activity of macrophage-like J774 cell line against the live vaccine strain (LVS) of F.t. through their ability to produce proinflammatory cytokines and chemokines. F.t. infection up-regulated IL-12 p40 production and down-regulated TNF-alpha production by stimulated macrophages; on the other hand, F.t. infection did not affect the production of IL-8, IL-6, MCP-5, and RANTES by stimulated macrophages. This showed that F.t. infection modulates the cytokine synthesis by J774 macrophage cell line.
- MeSH
- Cell Line MeSH
- Chemokines immunology MeSH
- Cytokines immunology MeSH
- Francisella tularensis immunology MeSH
- Macrophages immunology microbiology MeSH
- Mice MeSH
- Tularemia immunology microbiology MeSH
- Animals MeSH
- Check Tag
- Mice MeSH
- Animals MeSH
- Publication type
- Journal Article MeSH
- Research Support, Non-U.S. Gov't MeSH
- Names of Substances
- Chemokines MeSH
- Cytokines MeSH
There are three most important bacterial causative agents of serious infections that could be misused for warfare purposes: Bacillus anthracis (the causative agent of anthrax) is the most frequently mentioned one; however, Fracisella tularensis (causing tularemia) and Yersinia pestis (the causative agent of plague) are further bacterial agents enlisted by Centers for Disease Control and Prevention into the category A of potential biological weapons. This review intends to summarize basic information about these bacterial agents. Military aspects of their pathogenesis and the detection techniques suitable for field use are discussed.
- MeSH
- Anthrax microbiology MeSH
- Bacillus anthracis * isolation & purification pathogenicity MeSH
- Biological Warfare MeSH
- Biological Warfare Agents * MeSH
- Francisella tularensis * isolation & purification pathogenicity MeSH
- Humans MeSH
- Plague microbiology MeSH
- Tularemia microbiology MeSH
- Yersinia pestis * isolation & purification pathogenicity MeSH
- Animals MeSH
- Check Tag
- Humans MeSH
- Animals MeSH
- Publication type
- Journal Article MeSH
- Research Support, Non-U.S. Gov't MeSH
- Review MeSH
- Geographicals
- United States MeSH
- Names of Substances
- Biological Warfare Agents * MeSH
An amperometric biosensor based on acetylcholinesterase (AChE) immobilized in gelatin was used to develop an assay for the organophosphate paraoxon. The more traditional manner employing preincubation was used for comparison between measurement procedures, although the aim of the study was to examine the performance of the biosensor for real time monitoring of organophosphates. The biosensor was immersed in a reaction chamber and paraoxon was injected inside. We were able to detect 200 pg of paraoxon within one minute or 2.5 ppb when the biosensor was preincubed in the sample solution for 15 minutes. The practical impact and expectations are discussed.
- Keywords
- Organophosphate, acetylcholinesterase, assay, biosensor, electrochemical, paraoxon,
- Publication type
- Journal Article MeSH
Piezoelectric biosensor was used for diagnosis of infection by Francisellatularensis subsp. holarctica in European brown hares. Two kinds of experiments wereperformed in this study. First, sera from experimentally infected European brown hares(Lepus europaeus) were assayed by piezoelectric biosensor and the seventh day postinfection was found as the first one when statistically significant diagnosis of tularemia waspossible; all other sera collected from hares later than on day 7 following the infection werefound tularemia positive. Typing to classify the field strain of F. tularensis used for theexperimental infection was confirmed by proteome study. Second, sera from 35 Europeanbrown hare specimens sampled at hunting grounds and tested as tularemia positive by slowagglutination allowed diagnosis of tularemia by the piezoelectric biosensor. All these sera ofnaturally infected hares were found as tularemia positive, too. Efficacy of the piezoelectricbiosensor for the serological diagnosis of tularemia is discussed.
- Keywords
- Francisella tularensis, agglutination test, experimental and natural infection, immunosensor, reservoir host, serology, zoonosis,
- Publication type
- Journal Article MeSH