Nejvíce citovaný článek - PubMed ID 18434062
Introduction to clinical in vivo MR spectroscopy
OBJECTIVE: Many patients with long COVID experience neurological and psychological symptoms. Signal abnormalities on MR images in the corpus callosum have been reported. Knowledge about the metabolic profile in the splenium of the corpus callosum (CCS) may contribute to a better understanding of the pathophysiology of long COVID. MATERIALS AND METHODS: Eighty-one subjects underwent proton MR spectroscopy examination. The metabolic concentrations of total N-acetylaspartate (NAA), choline-containing compounds (Cho), total creatine (Cr), myo-inositol (mI), and NAA/Cho in the CCS were statistically compared in the group of patients containing 58 subjects with positive IgG COVID-19 antibodies or positive SARS-CoV-2 qPCR test at least two months before the MR and the group of healthy controls containing 23 subjects with negative IgG antibodies. RESULTS: An age-dependent effect of SARS-CoV-2 on Cho concentrations in the CCS has been observed. Considering the subjective threshold of age = 40 years, older patients showed significantly increased Cho concentrations in the CCS than older healthy controls (p = 0.02). NAA, Cr, and mI were unchanged. All metabolite concentrations in the CCS of younger post-COVID-19 patients remained unaffected by SARS-CoV-2. Cho did not show any difference between symptomatic and asymptomatic patients (p = 0.91). DISCUSSION: Our results suggest that SARS-CoV-2 disproportionately increases Cho concentration in the CCS among older post-COVID-19 patients compared to younger ones. The observed changes in Cho may be related to the microstructural reorganization in the CCS also reported in diffusion measurements rather than increased membrane turnover. These changes do not seem to be related to neuropsychological problems of the post-COVID-19 patients. Further metabolic studies are recommended to confirm these observations.
- Klíčová slova
- COVID-19, Metabolism, Proton MR spectroscopy, The splenium of the corpus callosum,
- MeSH
- cholin * metabolismus MeSH
- corpus callosum * diagnostické zobrazování metabolismus MeSH
- COVID-19 * diagnostické zobrazování metabolismus MeSH
- dospělí MeSH
- inositol metabolismus MeSH
- kreatin * metabolismus MeSH
- kyselina asparagová * analogy a deriváty metabolismus MeSH
- lidé středního věku MeSH
- lidé MeSH
- magnetická rezonanční spektroskopie metody MeSH
- protonová magnetická rezonanční spektroskopie * metody MeSH
- SARS-CoV-2 * MeSH
- senioři MeSH
- studie případů a kontrol MeSH
- Check Tag
- dospělí MeSH
- lidé středního věku MeSH
- lidé MeSH
- mužské pohlaví MeSH
- senioři MeSH
- ženské pohlaví MeSH
- Publikační typ
- časopisecké články MeSH
- Názvy látek
- cholin * MeSH
- inositol MeSH
- kreatin * MeSH
- kyselina asparagová * MeSH
- N-acetylaspartate MeSH Prohlížeč
BACKGROUND: The main aim of the present study is to determine the role of metabolites observed using proton magnetic resonance spectroscopy (1H-MRS) in obsessive-compulsive disorder (OCD). As the literature describing biochemical changes in OCD yields conflicting results, we focused on accurate metabolite quantification of total N-acetyl aspartate (tNAA), total creatine (tCr), total choline-containing compounds (tCh), and myo-inositol (mI) in the anterior cingulate cortex (ACC) to capture the small metabolic changes between OCD patients and controls and between OCD patients with and without medication. METHODS: In total 46 patients with OCD and 46 healthy controls (HC) matched for age and sex were included in the study. The severity of symptoms in the OCD was evaluated on the day of magnetic resonance imaging (MRI) using the Yale-Brown Obsessive-Compulsive Scale (YBOCS). Subjects underwent 1H-MRS from the pregenual ACC (pgACC) region to calculate concentrations of tNAA, tCr, tCho, and mI. Twenty-eight OCD and 28 HC subjects were included in the statistical analysis. We compared differences between groups for all selected metabolites and in OCD patients we analyzed the relationship between metabolite levels and symptom severity, medication status, age, and the duration of illness. RESULTS: Significant decreases in tCr (U = 253.00, p = 0.022) and mI (U = 197.00, p = 0.001) in the pgACC were observed in the OCD group. No statistically significant differences were found in tNAA and tCho levels; however, tCho revealed a trend towards lower concentrations in OCD patients (U = 278.00, p = 0.062). Metabolic concentrations showed no significant correlations with the age and duration of illness. The correlation statistics found a significant negative correlation between tCr levels and YBOCS compulsions subscale (cor = -0.380, p = 0.046). tCho and YBOCS compulsions subscale showed a trend towards a negative correlation (cor = -0.351, p = 0.067). Analysis of subgroups with or without medication showed no differences. CONCLUSIONS: Patients with OCD present metabolic disruption in the pgACC. The decrease in tCr shows an important relationship with OCD symptomatology. tCr as a marker of cerebral bioenergetics may also be considered as a biomarker of the severity of compulsions. The study failed to prove that metabolic changes correlate with the medication status or the duration of illness. It seems that a disruption in the balance between these metabolites and their transmission may play a role in the pathophysiology of OCD.
- Klíčová slova
- Choline-containing compounds, Creatine, Magnetic resonance spectroscopy, Myo-inositol, N-acetyl aspartate, Obsessive-compulsive disorder,
- MeSH
- cingulární gyrus diagnostické zobrazování metabolismus MeSH
- glutamin * metabolismus MeSH
- inositol metabolismus terapeutické užití MeSH
- kreatin metabolismus terapeutické užití MeSH
- kyselina asparagová metabolismus terapeutické užití MeSH
- lidé MeSH
- magnetická rezonanční tomografie MeSH
- obsedantně kompulzivní porucha * diagnóza MeSH
- protonová magnetická rezonanční spektroskopie metody MeSH
- receptory antigenů T-buněk metabolismus terapeutické užití MeSH
- Check Tag
- lidé MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- Názvy látek
- glutamin * MeSH
- inositol MeSH
- kreatin MeSH
- kyselina asparagová MeSH
- receptory antigenů T-buněk MeSH