Most cited article - PubMed ID 18755489
The effect of point mutations within the N-terminal domain of Mason-Pfizer monkey virus capsid protein on virus core assembly and infectivity
Fullerene derivatives with hydrophilic substituents have been shown to exhibit a range of biological activities, including antiviral ones. For a long time, the anti-HIV activity of fullerene derivatives was believed to be due to their binding into the hydrophobic pocket of HIV-1 protease, thereby blocking its activity. Recent work, however, brought new evidence of a novel, protease-independent mechanism of fullerene derivatives' action. We studied in more detail the mechanism of the anti-HIV-1 activity of N,N-dimethyl[70]fulleropyrrolidinium iodide fullerene derivatives. By using a combination of in vitro and cell-based approaches, we showed that these C70 derivatives inhibited neither HIV-1 protease nor HIV-1 maturation. Instead, our data indicate effects of fullerene C70 derivatives on viral genomic RNA packaging and HIV-1 cDNA synthesis during reverse transcription-without impairing reverse transcriptase activity though. Molecularly, this could be explained by a strong binding affinity of these fullerene derivatives to HIV-1 nucleocapsid domain, preventing its proper interaction with viral genomic RNA, thereby blocking reverse transcription and HIV-1 infectivity. Moreover, the fullerene derivatives' oxidative activity and fluorescence quenching, which could be one of the reasons for the inconsistency among reported anti-HIV-1 mechanisms, are discussed herein.
- Keywords
- HIV-1, RNA packaging, fullerene, inhibition, nucleocapsid,
- MeSH
- Fullerenes metabolism pharmacology MeSH
- Genome, Viral drug effects MeSH
- gag Gene Products, Human Immunodeficiency Virus metabolism MeSH
- HEK293 Cells MeSH
- HIV-1 drug effects genetics metabolism physiology MeSH
- Anti-HIV Agents metabolism pharmacology MeSH
- Humans MeSH
- Nucleocapsid Proteins metabolism MeSH
- Reverse Transcription MeSH
- RNA, Viral metabolism MeSH
- Virus Uncoating drug effects MeSH
- Protein Binding MeSH
- Virion metabolism MeSH
- Viral Genome Packaging drug effects MeSH
- Check Tag
- Humans MeSH
- Publication type
- Journal Article MeSH
- Research Support, Non-U.S. Gov't MeSH
- Names of Substances
- Fullerenes MeSH
- gag Gene Products, Human Immunodeficiency Virus MeSH
- Anti-HIV Agents MeSH
- Nucleocapsid Proteins MeSH
- RNA, Viral MeSH
Retrovirus assembly is driven mostly by Gag polyprotein oligomerization, which is mediated by inter and intra protein-protein interactions among its capsid (CA) domains. Mason-Pfizer monkey virus (M-PMV) CA contains three cysteines (C82, C193 and C213), where the latter two are highly conserved among most retroviruses. To determine the importance of these cysteines, we introduced mutations of these residues in both bacterial and proviral vectors and studied their impact on the M-PMV life cycle. These studies revealed that the presence of both conserved cysteines of M-PMV CA is necessary for both proper assembly and virus infectivity. Our findings suggest a crucial role of these cysteines in the formation of infectious mature particles.
- Keywords
- Cysteine mutagenesis, M-PMV capsid, M-PMV infectivity, Retrovirus assembly, Virus core stability,
- MeSH
- Cell Line MeSH
- Cysteine genetics MeSH
- Genetic Vectors MeSH
- HEK293 Cells MeSH
- Humans MeSH
- Mason-Pfizer monkey virus genetics physiology MeSH
- Mutation MeSH
- Proviruses genetics MeSH
- Virus Assembly * MeSH
- Virion physiology MeSH
- Capsid Proteins chemistry genetics MeSH
- Check Tag
- Humans MeSH
- Publication type
- Journal Article MeSH
- Research Support, Non-U.S. Gov't MeSH
- Research Support, N.I.H., Extramural MeSH
- Names of Substances
- Cysteine MeSH
- Capsid Proteins MeSH
In addition to specific RNA-binding zinc finger domains, the retroviral Gag polyprotein contains clusters of basic amino acid residues that are thought to support Gag-viral genomic RNA (gRNA) interactions. One of these clusters is the basic K16NK18EK20 region, located upstream of the first zinc finger of the Mason-Pfizer monkey virus (M-PMV) nucleocapsid (NC) protein. To investigate the role of this basic region in the M-PMV life cycle, we used a combination of in vivo and in vitro methods to study a series of mutants in which the overall charge of this region was more positive (RNRER), more negative (AEAEA), or neutral (AAAAA). The mutations markedly affected gRNA incorporation and the onset of reverse transcription. The introduction of a more negative charge (AEAEA) significantly reduced the incorporation of M-PMV gRNA into nascent particles. Moreover, the assembly of immature particles of the AEAEA Gag mutant was relocated from the perinuclear region to the plasma membrane. In contrast, an enhancement of the basicity of this region of M-PMV NC (RNRER) caused a substantially more efficient incorporation of gRNA, subsequently resulting in an increase in M-PMV RNRER infectivity. Nevertheless, despite the larger amount of gRNA packaged by the RNRER mutant, the onset of reverse transcription was delayed in comparison to that of the wild type. Our data clearly show the requirement for certain positively charged amino acid residues upstream of the first zinc finger for proper gRNA incorporation, assembly of immature particles, and proceeding of reverse transcription.IMPORTANCE We identified a short sequence within the Gag polyprotein that, together with the zinc finger domains and the previously identified RKK motif, contributes to the packaging of genomic RNA (gRNA) of Mason-Pfizer monkey virus (M-PMV). Importantly, in addition to gRNA incorporation, this basic region (KNKEK) at the N terminus of the nucleocapsid protein is crucial for the onset of reverse transcription. Mutations that change the positive charge of the region to a negative one significantly reduced specific gRNA packaging. The assembly of immature particles of this mutant was reoriented from the perinuclear region to the plasma membrane. On the contrary, an enhancement of the basic character of this region increased both the efficiency of gRNA packaging and the infectivity of the virus. However, the onset of reverse transcription was delayed even in this mutant. In summary, the basic region in M-PMV Gag plays a key role in the packaging of genomic RNA and, consequently, in assembly and reverse transcription.
- Keywords
- M-PMV, RNA packaging, assembly, basic residues, human immunodeficiency virus, infectivity, nucleocapsid, retroviruses, reverse transcription,
- MeSH
- Cell Line MeSH
- Gene Products, gag genetics MeSH
- HEK293 Cells MeSH
- Humans MeSH
- Mason-Pfizer monkey virus genetics physiology MeSH
- Mutation genetics MeSH
- Nucleocapsid Proteins genetics MeSH
- Reverse Transcription genetics MeSH
- RNA, Viral genetics MeSH
- Amino Acid Sequence genetics MeSH
- Virus Assembly genetics MeSH
- Zinc Fingers genetics MeSH
- Check Tag
- Humans MeSH
- Publication type
- Journal Article MeSH
- Research Support, Non-U.S. Gov't MeSH
- Names of Substances
- Gene Products, gag MeSH
- Nucleocapsid Proteins MeSH
- RNA, Viral MeSH
BACKGROUND: Formation of a mature core is a crucial event for infectivity of retroviruses such as Mason-Pfizer monkey virus (M-PMV). The process is triggered by proteolytic cleavage of the polyprotein precursor Gag, which releases matrix, capsid (CA), and nucleocapsid proteins. Once released, CA assembles to form a mature core - a hexameric lattice protein shell that protects retroviral genomic RNA. Subtle conformational changes within CA induce the transition from the immature lattice to the mature lattice. Upon release from the precursor, the initially unstructured N-terminus of CA is refolded to form a β-hairpin stabilized by a salt bridge between the N-terminal proline and conserved aspartate. Although the crucial role of the β-hairpin in the mature core assembly has been confirmed, its precise structural function remains poorly understood. RESULTS: Based on a previous NMR analysis of the N-terminal part of M-PMV CA, which suggested the role of additional interactions besides the proline-aspartate salt bridge in stabilization of the β-hairpin, we introduced a series of mutations into the CA sequence. The effect of the mutations on virus assembly and infectivity was analyzed. In addition, the structural consequences of selected mutations were determined by NMR spectroscopy. We identified a network of interactions critical for proper formation of the M-PMV core. This network involves residue R14, located in the N-terminal β-hairpin; residue W52 in the loop connecting helices 2 and 3; and residues Q113, Q115, and Y116 in helix 5. CONCLUSION: Combining functional and structural analyses, we identified a network of supportive interactions that stabilize the β-hairpin in mature M-PMV CA.
- MeSH
- Simian Acquired Immunodeficiency Syndrome genetics metabolism MeSH
- Cell Line MeSH
- HEK293 Cells MeSH
- Humans MeSH
- Mason-Pfizer monkey virus genetics metabolism MeSH
- Molecular Sequence Data MeSH
- Mutation genetics MeSH
- Protein Structure, Secondary genetics MeSH
- Amino Acid Sequence MeSH
- Virus Assembly genetics MeSH
- Virion genetics metabolism MeSH
- Capsid Proteins metabolism MeSH
- Animals MeSH
- Check Tag
- Humans MeSH
- Animals MeSH
- Publication type
- Journal Article MeSH
- Research Support, Non-U.S. Gov't MeSH
- Names of Substances
- Capsid Proteins MeSH
Immature retroviral particles are assembled by self-association of the structural polyprotein precursor Gag. During maturation the Gag polyprotein is proteolytically cleaved, yielding mature structural proteins, matrix (MA), capsid (CA), and nucleocapsid (NC), that reassemble into a mature viral particle. Proteolytic cleavage causes the N terminus of CA to fold back to form a β-hairpin, anchored by an internal salt bridge between the N-terminal proline and the inner aspartate. Using an in vitro assembly system of capsid-nucleocapsid protein (CANC), we studied the formation of virus-like particles (VLP) of a gammaretrovirus, the xenotropic murine leukemia virus (MLV)-related virus (XMRV). We show here that, unlike other retroviruses, XMRV CA and CANC do not assemble tubular particles characteristic of mature assembly. The prevention of β-hairpin formation by the deletion of either the N-terminal proline or 10 initial amino acids enabled the assembly of ΔProCANC or Δ10CANC into immature-like spherical particles. Detailed three-dimensional (3D) structural analysis of these particles revealed that below a disordered N-terminal CA layer, the C terminus of CA assembles a typical immature lattice, which is linked by rod-like densities with the RNP.
- MeSH
- DNA Primers MeSH
- Cryoelectron Microscopy MeSH
- Escherichia coli ultrastructure virology MeSH
- Fourier Analysis MeSH
- Molecular Sequence Data MeSH
- Polymerase Chain Reaction MeSH
- Proteolysis MeSH
- Amino Acid Sequence MeSH
- Base Sequence MeSH
- Sequence Homology, Amino Acid MeSH
- Virus Assembly * MeSH
- Microscopy, Electron, Transmission MeSH
- Virion physiology MeSH
- Viral Proteins chemistry metabolism MeSH
- Leukemia Virus, Murine physiology MeSH
- Publication type
- Journal Article MeSH
- Research Support, Non-U.S. Gov't MeSH
- Research Support, N.I.H., Extramural MeSH
- Names of Substances
- DNA Primers MeSH
- Viral Proteins MeSH