Nejvíce citovaný článek - PubMed ID 18829513
Despite the advancements made in the diagnosis and treatment of cancer, the stages associated with metastasis remain largely incurable and represent the primary cause of cancer-related deaths. The dissemination of cancer is facilitated by circulating tumor cells (CTCs), which originate from the primary tumor or metastatic sites and enter the bloodstream, subsequently spreading to distant parts of the body. CTCs have garnered significant attention in research due to their accessibility in peripheral blood, despite their low abundance. They are being extensively studied to gain a deeper understanding of the mechanisms underlying cancer dissemination and to identify effective therapeutic strategies for advanced stages of the disease. Therefore, substantial efforts have been directed towards establishing and characterizing relevant experimental models derived from CTCs, aiming to provide relevant tools for research. In this review, we provide an overview of recent progress in the establishment of preclinical CTC-derived models, such as CTC-derived xenografts (CDX) and cell cultures, which show promise for the study of CTCs. We discuss the advantages and limitations of these models and conclude by summarizing the potential future use of CTCs and CTC-derived models in cancer treatment decisions and their utility as precision medicine tools.
Treatment of aggressive glioblastoma multiforme (GBM) must be based on very precise histological and molecular diagnostic of GBM type. According to the WHO guidelines, only tissue biopsy is a relevant source of cellular material evaluated in the diagnostic process to specify the tumor features. Nevertheless, obtaining a GBM biopsy is complicated and relies mostly on resection surgery. Evaluating circulating free DNA and/or circulating tumor cells (CTCs) in the clinic, using a liquid biopsy could represent a non-invasive cancer care optimization. In the present study, the peripheral blood of patients undergoing GBM resection (n = 18) was collected and examined for CTCs. The feasibility of GBM molecular diagnostics from a simple non-invasive peripheral blood withdrawal was evaluated. The size-based enriched CTCs were analyzed using cytomorphology and their origin confirmed based on mutational analysis. In addition, shared DNA mutations in CTCs and in primary tumor tissue were searched. For the identification of CTCs, next generation sequencing (NGS) was used. The GeneReader™ sequencing platform enables targeted sequencing of a 12-gene panel and direct evaluation of detected gene variations using QIAGEN Clinical Insight Analyze (QCI-A) software with a special algorithm for liquid biopsy sequencing analysis. Herein, we present a standard operating procedure for CTC enrichment in GBM patients, CTC in vitro culture, CTC cytomorphological evaluation, and NGS analysis of CTCs using the QIAGEN Actionable Insights Tumor (ATP) Panel. CTCs were present in all tested patients (18/18). The NGS data generated for formalin-fixed paraffin-embedded (FFPE) primary tumor tissues and CTCs reached significantly high-quality parameters. The comparisons between different sample types (CTCs vs. primary tumors) and sampling area (different primary tumor regions) showed a significant level of concordance, indicating CTC testing could be used for patient monitoring and recurrence awareness. Notably, more mutations were detected when analyzing CTC samples compared with the paired primary tumors (n = 3). The results confirm the feasibility of using CTCs as a source of tumor DNA in a diagnostic process, especially when evaluating the molecular characteristics of GBMs. A major advantage of the presented NGS approach for detecting CTCs is the simultaneous identification of several markers relevant for GBM diagnostics, allowing molecular diagnostics on cytological specimens and potential administration of innovative targeted therapies.
- Klíčová slova
- CTCs, culturing, gene expression, glioblastoma, in vitro, liquid biopsy, metacell, sequencing,
- Publikační typ
- časopisecké články MeSH
Colorectal carcinoma (CRC) is characterized by wide intratumor heterogeneity with general genomic instability and there is a need for improved diagnostic, prognostic, and therapeutic tools. The liquid biopsy provides a noninvasive route of sample collection for analysis of circulating tumor cells (CTCs) and genomic material, including cell-free DNA (cfDNA), as a complementary biopsy to the solid tumor tissue. The solid biopsy is critical for molecular characterization and diagnosis at the time of collection. The liquid biopsy has the advantage of longitudinal molecular characterization of the disease, which is crucial for precision medicine and patient-oriented treatment. In this review, we provide an overview of CRC and the different methodologies for the detection of CTCs and cfDNA, followed by a discussion on the potential clinical utility of the liquid biopsy in CRC patient care, and lastly, current challenges in the field.
- Klíčová slova
- CRC, CTC, cfDNA, circulating free DNA, circulating tumor DNA, circulating tumor cell, colorectal carcinoma, ctDNA, liquid biopsy, precision medicine,
- Publikační typ
- časopisecké články MeSH
- přehledy MeSH
The presence of circulating tumor cells (CTCs) in patients with solid tumors is associated with poor prognosis. However, there are limited data concerning the detection of CTCs in renal cell cancer (RCC). The aim of this study is to evaluate the presence of CTCs in peripheral blood of patients with RCC undergoing surgery (n = 186). CTCs were tested before and after surgery as well as during the follow-up period afterwards. In total 495 CTC testing in duplicates were provided. To enrich CTCs, a size-based separation protocol and tube MetaCell® was used. CTCs presence was evaluated by single cell cytomorphology based on vital fluorescence microscopy. Additionally, to standardly applied fluorescence stains, CTCs viability was controlled by mitochondrial activity. CTCs were detected independently on the sampling order in up to 86.7% of the tested blood samples in patients undergoing RCC surgery. There is higher probability of CTC detection with growing tumor size, especially in clear cell renal cell cancer (ccRCC) cases. Similarly, the tumor size corresponds with metastasis presence and lymph node positivity and CTC detection. This paper describes for the first-time successful analysis of viable CTCs and their mitochondria as a part of the functional characterization of CTCs in RCC.
- Klíčová slova
- CTCs, MetaCell, PDL-1, culturing, gene expression, immunotherapy, in vitro, renal cancer,
- Publikační typ
- časopisecké články MeSH
Circulating tumor cells (CTCs), detached from the primary tumor or metastases and shed in the patient's bloodstream, represent a relatively easily obtainable sample of the cancer tissue that can indicate the actual state of cancer, and their evaluation can be repeated many times during the course of treatment. As part of liquid biopsy, evaluation of CTCs provides a lot of clinically relevant information, which reflects the actual, real-time conditions of the disease. CTCs can be used in cancer diagnosis or screening, real-time long-term disease monitoring and even therapy guidance. Their analysis can include their number, morphology, and biological features by using immunocytochemistry and all "-omic" technologies. This review describes methods of CTC isolation and potential clinical utilization in lung cancer.
- Klíčová slova
- Circulating tumor cells, biomarker, culturing, liquid biopsy, lung cancer, review,
- MeSH
- časná detekce nádoru MeSH
- diagnostické techniky molekulární MeSH
- lidé MeSH
- nádorové biomarkery MeSH
- nádorové cirkulující buňky metabolismus patologie MeSH
- nádory plic diagnóza etiologie terapie MeSH
- tekutá biopsie metody MeSH
- Check Tag
- lidé MeSH
- Publikační typ
- časopisecké články MeSH
- přehledy MeSH
- Názvy látek
- nádorové biomarkery MeSH
Circulating tumor cells (CTCs) are promising biomarkers in prostate cancer (PC) because they derive from primary tumor and metastatic tissues. In this study, we used quantitative real-time PCR (qPCR) to compare the expression profiles of 41 PC-related genes between paired CTC and spinal column metastasis samples from 22 PC patients that underwent surgery for spinal cord compression. We observed good concordance between the gene expression profiles in the CTC and metastasis samples in most of the PC patients. Expression of nine genes (AGR2, AKR1C3, AR, CDH1, FOLH1, HER2, KRT19, MDK, and SPINK1) showed a significant correlation between the CTC and metastasis samples. Hierarchical clustering analysis showed a similar grouping of PC patients based on the expression of these nine genes in both CTC and metastasis samples. Our findings demonstrate that CTCs mirror gene expression patterns in tissue metastasis samples from PC patients. Although low detection frequency of certain genes is a limitation in CTCs, our results indicate the potential for CTC phenotyping as a tool to improve individualized therapy in metastatic prostate cancer.
- Klíčová slova
- circulating tumor cells, liquid biopsies, skeletal metastases of prostate cancer,
- Publikační typ
- časopisecké články MeSH
Circulating tumor cells (CTC) present in peripheral blood are assigned precursors of advanced tumor disease. Simplicity of blood withdrawal procedure adds practically an unlimited possibility of the CTC-monitoring and the advantages of the repeated biopsies over time. CTC got prognostic, predictive and diagnostic status with the technologic advance. Although the clinical utility of CTC has reached the high evidence, the significance of CTC testing was presented in the treatment strategy mostly with palliative intention. We report on the experiences with the CTC-testing in the CLIA-like laboratory working with the size-based CTC separation and in vitro culture. The data is presented in the form of case reports in patients with breast (BC), colorectal (CRC), prostate (PC) and lung cancer (NSCLC) to support the clinical utility of CTC during the neoadjuvant, adjuvant and palliative treatment. The presented findings support the evidence for liquid biopsy clinical implementation and enhance the ability of malignant disease monitoring and the treatment efficacy prediction.
- Klíčová slova
- Circulating tumor cells, breast cancer, chemoresistance, colorectal cancer, non-small-cell lung cancer, prostate cancer,
- Publikační typ
- časopisecké články MeSH
The optimal choice of cancer therapy depends upon analysis of the tumor genome for druggable molecular alterations. The spatial and temporal intratumor heterogeneity of cancers creates substantial challenges, as molecular profile depends on time and site of tumor tissue collection. To capture the entire molecular profile, multiple biopsies from primary and metastatic sites at different time points would be required, which is not feasible for ethical or economic reasons. Molecular analysis of circulating cell-free DNA offers a novel, minimally invasive method that can be performed at multiple time-points and plausibly better represents the prevailing molecular profile of the cancer. Molecular analysis of this cell-free DNA offers multiple clinically useful applications, such as identification of molecular targets for cancer therapy, monitoring of tumor molecular profile in real time, detection of emerging molecular aberrations associated with resistance to particular therapy, determination of cancer prognosis and diagnosis of cancer recurrence or progression.
- Klíčová slova
- Liquid biopsy, advanced cancer, cell-free DNA, personalized medicine, targeted therapy,
- MeSH
- biopsie metody MeSH
- chemorezistence MeSH
- cílená molekulární terapie MeSH
- diagnostické techniky molekulární MeSH
- DNA nádorová * MeSH
- genetická variace * MeSH
- genomika metody MeSH
- individualizovaná medicína MeSH
- lidé MeSH
- management nemoci MeSH
- nádorové biomarkery * MeSH
- nádory diagnóza genetika mortalita terapie MeSH
- prognóza MeSH
- staging nádorů MeSH
- výsledek terapie MeSH
- Check Tag
- lidé MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- přehledy MeSH
- Research Support, N.I.H., Extramural MeSH
- Názvy látek
- DNA nádorová * MeSH
- nádorové biomarkery * MeSH
Delayed diagnosis of ovarian cancer (OC) is usually a cause of its high mortality. OC counts for one of the most aggressive gynecological malignancies. Noninvasive biomarkers may be used to help with diagnostic and treatment decisions in OC management. The incidence and clinical significance of occult OC cells (circulating tumor cells-CTCs) in the peripheral blood of patients with newly diagnosed or nondiagnosed OC at the time of surgical intervention were examined in our study. The objective of the study was to isolate and cultivate CTCs in OC patients (mainly stage IIIB-C) by a recently introduced size-based separation method (MetaCell(®)). CTCs were successfully isolated in patients with OC capturing cells with proliferation potential. The cells were enriched in good fitness, which enabled the short term in vitro culture of the CTCs. The CTCs may be used for further downstream applications (e.g. gene expression analysis) even if in the majority of the in vitro CTC cultures no confluence was reached. The CTCs were detected in 77 out of 118 patients (65.2%). CTC positivity was given to the relationship with different disease stage parameters with special focus on CA125 marker levels. The results show that the information on CTC presence may provide new and independent prognosis staging information to the patient description. Several interesting relationships of CA125, age and ascites presence are reported. As shown in our patient sample, patients with ascites tend to have higher CA125 levels, even if the CTCs were not found in the peripheral blood. It suggests that hematogenous dissemination is fully represented by the CTCs while lymphogenic dissemination is represented by elevated CA125. In this context, easy access to CTCs provided by the method applied in our study, both at the time of diagnosis and relapse, may become an increasingly valuable tool in future. This methodology may provide an opportunity for more personalized medicine where treatment for OC may be guided by information from an individual's CTC molecular profile.
- Klíčová slova
- CA125, CTCs, circulating tumor cells, cultivation, gene expression, in vitro, ovarian cancer,
- Publikační typ
- časopisecké články MeSH
INTRODUCTION: Results of clinical trials have demonstrated that circulating tumour cells (CTCs) are frequently detected in patients with urothelial tumours. The monitoring of CTCs has the potential to improve therapeutic management at an early stage and also to identify patients with increased risk of tumour progression or recurrence before the onset of clinically detected metastasis. In this study, we report a new effectively simplified methodology for a separation and in vitro culturing of viable CTCs from peripheral blood. METHOD: We include patients diagnosed with 3 types of urothelial tumours (prostate cancer, urinary bladder cancer, and kidney cancer). A size-based separation method for viable CTC - enrichment from unclothed peripheral blood has been introduced (MetaCell, Ostrava, Czech Republic). The enriched CTCs fraction was cultured directly on the separation membrane, or transferred from the membrane and cultured on any plastic surface or a microscopic slide. RESULTS: We report a successful application of a CTCs isolation procedure in patients with urothelial cancers. The CTCs captured on the membrane are enriched with a remarkable proliferation potential. This has enabled us to set up in vitro cell cultures from the viable CTCs unaffected by any fixation buffers, antibodies or lysing solutions. Next, the CTCs were cultured in vitro for a minimum of 10 to 14 days to enable further downstream analysis (e.g., immunohistochemistry). CONCLUSION: We demonstrated an efficient CTCs capture platform, based on a cell size separation principle. Furthermore, we report an ability to culture the enriched cells - a critical requirement for post-isolation cellular analysis.
- Publikační typ
- časopisecké články MeSH