Most cited article - PubMed ID 20113575
Seropositivity for Enterocytozoon bieneusi, Czech Republic
Total joint arthroplasty is a commonly used surgical procedure in orthopedics. Revision surgeries are required in >10% of patients mainly because of prosthetic joint infection caused by bacteria or aseptic implant loosening caused by chronic inflammation. Encephalitozoon cuniculi is a microsporidium, an obligate intracellular parasite, capable of exploiting migrating proinflammatory immune cells for dissemination within the host. We used molecular detection methods to evaluate the incidence of E. cuniculi among patients who had total hip or knee arthroplasty revision. Out of 49 patients, E. cuniculi genotypes I, II, or III were confirmed in joint samples from 3 men and 2 women who had implant loosening. Understanding the risks associated with the presence of microsporidia in periprosthetic joint infections is essential for proper management of arthroplasty. Furthermore, E. cuniculi should be considered a potential contributing cause of joint inflammation and arthrosis.
- Keywords
- Czech Republic, Encephalitozoon cuniculi, PCR, arthroplasty, hip, implant loosening, knee, microsporidia, parasites, prosthetic joint infection, qPCR, zoonosis,
- MeSH
- Encephalitozoon cuniculi * genetics MeSH
- Encephalitozoonosis * epidemiology MeSH
- Humans MeSH
- Microsporidia * genetics MeSH
- Inflammation MeSH
- Check Tag
- Humans MeSH
- Male MeSH
- Female MeSH
- Publication type
- Journal Article MeSH
- Geographicals
- Czech Republic epidemiology MeSH
Microsporidia are pathogenic organism related to fungi. They cause infections in a wide variety of mammals as well as in avian, amphibian, and reptilian hosts. Many microsporidia species play an important role in the development of serious diseases that have significant implications in human and veterinary medicine. While microsporidia were originally considered to be opportunistic pathogens in humans, it is now understood that infections also occur in immune competent humans. Encephalitozoon cuniculi, Encephalitozoon intestinalis, and Enterocytozoon bieneusi are primarily mammalian pathogens. However, many other species of microsporidia that have some other primary host that is not a mammal have been reported to cause sporadic mammalian infections. Experimental models and observations in natural infections have demonstrated that microsporidia can cause a latent infection in mammalian hosts. This chapter reviews the published studies on mammalian microsporidiosis and the data on chronic infections due to these enigmatic pathogens.
- Keywords
- Epidemiology, Infection, Latency, Mammals, Microsporidia, Recurrent infection, Transmission,
- MeSH
- Enterocytozoon * MeSH
- Feces microbiology MeSH
- Humans MeSH
- Microsporidia * genetics MeSH
- Persistent Infection MeSH
- Mammals MeSH
- Animals MeSH
- Check Tag
- Humans MeSH
- Animals MeSH
- Publication type
- Journal Article MeSH
In the present population-based study, we determined the prevalences of the most common human-pathogenic microsporidia, Encephalitozoon spp. and Enterocytozoon bieneusi, in asymptomatic healthy people living in the Czech Republic. A total of 382 males and females (ages, 1 to 84 years) living in the Czech Republic, of whom 265 were Czech nationals and 117 were foreign students, were included in a study testing for the presence of microsporidia by use of coprology and molecular methods. Single-species infections with Enterocytozoon bieneusi or an Encephalitozoon sp. were detected for 9 and 136 individuals, respectively. Moreover, coinfections were detected for 14 individuals. Four genotypes of 3 human-pathogenic Encephalitozoon spp. and 7 E. bieneusi genotypes, including 3 novel genotypes, were detected. Some of these were reported in humans for the first time. The highest prevalence was recorded for individuals older than 50 years and for loose, unformed stool samples. These findings clearly show that exposure to microsporidia is common among immunocompetent people and that microsporidiosis is not linked to any clinical manifestation in healthy populations.
- MeSH
- Asymptomatic Infections epidemiology MeSH
- DNA, Fungal chemistry genetics MeSH
- Adult MeSH
- Encephalitozoon classification isolation & purification MeSH
- Encephalitozoonosis epidemiology microbiology MeSH
- Middle Aged MeSH
- Humans MeSH
- Molecular Sequence Data MeSH
- Prevalence MeSH
- Sequence Analysis, DNA MeSH
- Check Tag
- Adult MeSH
- Middle Aged MeSH
- Humans MeSH
- Male MeSH
- Female MeSH
- Publication type
- Journal Article MeSH
- Research Support, Non-U.S. Gov't MeSH
- Geographicals
- Czech Republic epidemiology MeSH
- Names of Substances
- DNA, Fungal MeSH