Nejvíce citovaný článek - PubMed ID 21513009
Identifying conditions and traits that allow an introduced species to grow and spread, from being initially rare to becoming abundant (defined as invasiveness), is the crux of invasion ecology. Invasiveness and abundance are related but not the same, and we need to differentiate these concepts. Predicting both species abundance and invasiveness and their relationship in an invaded community is highly contextual, being contingent on the community trait profile and its invasibility. We operationalised a three-pronged invasion framework that considers traits, environmental context, and propagule pressure. Specifically, we measure the invasiveness of an alien species by combining three components (performance reflecting environmental suitability, product of species richness and the covariance between interaction strength and species abundance, and community-level interaction pressure); the expected population growth rate of alien species simply reflects the total effect of propagule pressure and the product of their population size and invasiveness. The invasibility of a community reflects the size of opportunity niches (the integral of positive invasiveness in the trait space) under the given abiotic conditions of the environment. Both species abundance and the surface of invasiveness over the trait space can be dynamic and variable. Whether an introduced species with functional traits similar to those of an abundant species in the community exhibits high or low invasiveness depends largely on the kernel functions of performance and interaction strength with respect to traits and environmental conditions. Knowledge of the covariance between interaction strength and species abundance and these kernel functions, thus, holds the key to accurate prediction of invasion dynamics.
- Publikační typ
- časopisecké články MeSH
- přehledy MeSH
In the current era of Big Data, existing synthesis tools such as formal meta-analyses are critical means to handle the deluge of information. However, there is a need for complementary tools that help to (a) organize evidence, (b) organize theory, and (c) closely connect evidence to theory. We present the hierarchy-of-hypotheses (HoH) approach to address these issues. In an HoH, hypotheses are conceptually and visually structured in a hierarchically nested way where the lower branches can be directly connected to empirical results. Used for organizing evidence, this tool allows researchers to conceptually connect empirical results derived through diverse approaches and to reveal under which circumstances hypotheses are applicable. Used for organizing theory, it allows researchers to uncover mechanistic components of hypotheses and previously neglected conceptual connections. In the present article, we offer guidance on how to build an HoH, provide examples from population and evolutionary biology and propose terminological clarifications.
- Klíčová slova
- hierarchy-of-hypotheses approach, knowledge synthesis, linking evidence to theory, structuring ideas, theory development,
- Publikační typ
- časopisecké články MeSH
BACKGROUND AND AIMS: Since its emergence in the mid-20th century, invasion biology has matured into a productive research field addressing questions of fundamental and applied importance. Not only has the number of empirical studies increased through time, but also has the number of competing, overlapping and, in some cases, contradictory hypotheses about biological invasions. To make these contradictions and redundancies explicit, and to gain insight into the field's current theoretical structure, we developed and applied a Delphi approach to create a consensus network of 39 existing invasion hypotheses. RESULTS: The resulting network was analysed with a link-clustering algorithm that revealed five concept clusters (resource availability, biotic interaction, propagule, trait and Darwin's clusters) representing complementary areas in the theory of invasion biology. The network also displays hypotheses that link two or more clusters, called connecting hypotheses, which are important in determining network structure. The network indicates hypotheses that are logically linked either positively (77 connections of support) or negatively (that is, they contradict each other; 6 connections). SIGNIFICANCE: The network visually synthesizes how invasion biology's predominant hypotheses are conceptually related to each other, and thus, reveals an emergent structure - a conceptual map - that can serve as a navigation tool for scholars, practitioners and students, both inside and outside of the field of invasion biology, and guide the development of a more coherent foundation of theory. Additionally, the outlined approach can be more widely applied to create a conceptual map for the larger fields of ecology and biogeography.
- Klíčová slova
- Delphi method, biological invasions, concepts, consensus map, invasion science, invasion theory, navigation tools, network analysis,
- Publikační typ
- časopisecké články MeSH