Most cited article - PubMed ID 2243364
BACKGROUND/AIM: Patients with unresectable liver colorectal cancer metastases are treated with neoadjuvant chemotherapy often accompanied by biological therapy aimed at reducing the mass of metastases and thus increasing the chances of resectability. Bevacizumab comprises an anti-VEGF (vascular endothelial growth factor) humanized IgG monoclonal antibody that is used for biological therapy purposes. It acts to inhibit angiogenesis, thereby slowing down the growth of metastases. Due to its being administered systematically, bevacizumab also exerts an effect on the surrounding healthy liver parenchyma and potentially limits the process of neovascularization and thus regeneration of the liver. Since the remnant liver volume forms an important factor in postoperative morbidity and mortality following a major hepatectomy, we decided to study the effect of bevacizumab on vascular and biliary microarchitecture in healthy liver parenchyma and its ability to regenerate following major hepatectomy. MATERIALS AND METHODS: We performed an experiment employing a large animal model where a total of 16 piglets were divided into two groups (8 piglets in the control group and 8 piglets in the experimental group with bevacizumab). All the animals were subjected to major hepatectomy and the experimental group was given bevacizumab prior to hepatectomy. All the animals were sacrificed after 4 weeks. We performed biochemical analyses at regular time intervals during the follow-up period. Histological examination of the liver tissue was performed following sacrifice of the animals. RESULTS: No statistical difference was shown between groups in terms of the biochemical and immunohistochemical parameters. The histological examination of the regenerating liver tissue revealed the higher length density of sinusoids in the experimental group. CONCLUSION: Bevacizumab does not act to impair liver regeneration following hepatectomy.
- Keywords
- Bevacizumab, anti-VEGF, hepatectomy, liver regeneration,
- MeSH
- Bevacizumab pharmacology therapeutic use MeSH
- Hepatectomy MeSH
- Antibodies, Monoclonal, Humanized pharmacology therapeutic use MeSH
- Colorectal Neoplasms * drug therapy pathology surgery MeSH
- Humans MeSH
- Disease Models, Animal MeSH
- Liver Neoplasms * drug therapy secondary surgery MeSH
- Neovascularization, Pathologic drug therapy MeSH
- Swine MeSH
- Liver Regeneration MeSH
- Vascular Endothelial Growth Factor A MeSH
- Animals MeSH
- Check Tag
- Humans MeSH
- Animals MeSH
- Publication type
- Journal Article MeSH
- Names of Substances
- Bevacizumab MeSH
- Antibodies, Monoclonal, Humanized MeSH
- Vascular Endothelial Growth Factor A MeSH
In liver surgery, biliary obstruction can lead to secondary biliary cirrhosis, a life-threatening disease with liver transplantation as the only curative treatment option. Mesenchymal stromal cells (MSC) have been shown to improve liver function in both acute and chronic liver disease models. This study evaluated the effect of allogenic MSC transplantation in a large animal model of repeated biliary obstruction followed by partial hepatectomy. MSC transplantation supported the growth of regenerated liver tissue after 14 days (MSC group, n = 10: from 1087 ± 108 (0 h) to 1243 ± 92 mL (14 days); control group, n = 11: from 1080 ± 95 (0 h) to 1100 ± 105 mL (14 days), p = 0.016), with a lower volume fraction of hepatocytes in regenerated liver tissue compared to resected liver tissue (59.5 ± 10.2% vs. 70.2 ± 5.6%, p < 0.05). Volume fraction of connective tissue, blood vessels and bile vessels in regenerated liver tissue, serum levels of liver enzymes (AST, ALT, ALP and GGT) and liver metabolites (albumin, bilirubin, urea and creatinine), as well as plasma levels of IL-6, IL-8, TNF-α and TGF-β, were not affected by MSC transplantation. In our novel, large animal (pig) model of repeated biliary obstruction followed by partial hepatectomy, MSC transplantation promoted growth of liver tissue without any effect on liver function. This study underscores the importance of translating results between small and large animal models as well as the careful translation of results from animal model into human medicine.
- Keywords
- hepatectomy, mesenchymal stromal cell, pig model, quantitative histology, secondary biliary cirrhosis,
- MeSH
- Cholestasis complications MeSH
- Mesenchymal Stem Cells MeSH
- Disease Models, Animal * MeSH
- Liver Diseases etiology pathology therapy MeSH
- Swine MeSH
- Mesenchymal Stem Cell Transplantation methods MeSH
- Animals MeSH
- Check Tag
- Animals MeSH
- Publication type
- Journal Article MeSH
The porcine liver is frequently used as a large animal model for verification of surgical techniques, as well as experimental therapies. Often, a histological evaluation is required that include measurements of the size, nuclearity or density of hepatocytes. Our aims were to assess the mean number-weighted volume of hepatocytes, the numerical density of hepatocytes, and the fraction of binuclear hepatocytes (BnHEP) in the porcine liver, and compare the distribution of these parameters among hepatic lobes and macroscopic regions of interest (ROIs) with different positions related to the liver vasculature. Using disector and nucleator as design-based stereological methods, the morphometry of hepatocytes was quantified in seven healthy piglets. The samples were obtained from all six hepatic lobes and three ROIs (peripheral, paracaval and paraportal) within each lobe. Histological sections (thickness 16 μm) of formalin-fixed paraffin-embedded material were stained with the periodic acid-Schiff reaction to indicate the cell outlines and were assessed in a series of 3-μm-thick optical sections. The mean number-weighted volume of mononuclear hepatocytes (MnHEP) in all samples was 3670 ± 805 μm3 (mean ± SD). The mean number-weighted volume of BnHEP was 7050 ± 2550 μm3 . The fraction of BnHEP was 4 ± 2%. The numerical density of all hepatocytes was 146 997 ± 15 738 cells mm-3 of liver parenchyma. The porcine hepatic lobes contained hepatocytes of a comparable size, nuclearity and density. No significant differences were identified between the lobes. The peripheral ROIs of the hepatic lobes contained the largest MnHEP with the smallest numerical density. The distribution of a larger MnHEP was correlated with a larger volume of BnHEP and a smaller numerical density of all hepatocytes. Practical recommendations for designing studies that involve stereological evaluations of the size, nuclearity and density of hepatocytes in porcine liver are provided.
- Keywords
- animal model, disector, liver surgery, morphometry, nucleator, pig, stereology, swine,
- MeSH
- Hepatocytes * MeSH
- Liver anatomy & histology cytology MeSH
- Cell Count methods MeSH
- Swine MeSH
- Cell Size * MeSH
- Animals MeSH
- Check Tag
- Male MeSH
- Female MeSH
- Animals MeSH
- Publication type
- Journal Article MeSH
Degenerative affections of nerve tissues are often accompanied by changes of vascularization. In this regard, not much is known about hereditary cerebellar degeneration. In this study, we compared the vascularity of the individual cerebellar components and the mesencephalon of 3-month-old wild type mice (n = 5) and Lurcher mutant mice, which represent a model of hereditary olivocerebellar degeneration (n = 5). Paraformaldehyde-fixed brains were processed into 18-μm thick serial sections with random orientation. Microvessels were visualized using polyclonal rabbit anti-laminin antibodies. Then, the stacks comprised of three 5-μm thick optical sections were recorded using systematic uniform random sampling. Stereological assessment was conducted based on photo-documentation. We found that each of the cerebellar components has its own features of vascularity. The greatest number and length of vessels were found in the granular layer; the number of vessels was lower in the molecular layer, and the lowest number of vessels was observed in the cerebellar nuclei corresponding with their low volume. Nevertheless, the nuclei had the greatest density of blood vessels. The reduction of cerebellum volume in the Lurcher mice was accompanied by a reduction in vascularization in the individual cerebellar components, mainly in the cortex. Moreover, despite the lower density of microvessels in the Lurcher mice compared with the wild type mice, the relative density of microvessels in the cerebellar cortex and nuclei was greater in Lurcher mice. The complete primary morphometric data, in the form of continuous variables, is included as a supplement. Mapping of the cerebellar and midbrain microvessels has explanatory potential for studies using mouse models of neurodegeneration.
- Keywords
- Lurcher, blood microvessels, cerebellum, cerebral degeneration, laminin, mice, quantitative histology, stereology,
- Publication type
- Journal Article MeSH
Three-dimensional (3D) study of capillary network of individual muscle fibres in rat extensor digitorum longus (EDL) and soleus (SOL) muscles is presented. Stereology and 3D reconstruction techniques were applied to stacks of serial optical sections recorded by a confocal microscope from thick muscle slices. The results suggest that SOL muscle fibres have a larger surface area and volume as well as a larger length of capillaries per fibre length than EDL. On the other hand, these two muscles have a similar ratio of capillary length to fibre surface area. The 3D approach to evaluation of muscle fibre capillarization brings many advantages over traditional measurements made on single muscle sections and could also be applied to the study of angiogenesis in other tissues.
- MeSH
- Capillaries anatomy & histology MeSH
- Microscopy, Confocal MeSH
- Muscle Fibers, Skeletal cytology MeSH
- Muscle, Skeletal blood supply cytology MeSH
- Rats MeSH
- Image Processing, Computer-Assisted MeSH
- Rats, Wistar MeSH
- Animals MeSH
- Check Tag
- Rats MeSH
- Male MeSH
- Animals MeSH
- Publication type
- Journal Article MeSH
- Research Support, Non-U.S. Gov't MeSH