Most cited article - PubMed ID 22814338
Parasite diversity and microsatellite variability in native and introduced populations of four Neogobius species (Gobiidae)
Successful co-introduction of a parasite and its host relies not only on presence of the parasite on host individuals in the founder population but also on the ability of both host and parasite to persist in the new area. Gyrodactylus proterorhini (Monogenea) has been successfully co-introduced with its Ponto-Caspian goby hosts (Babka gymnotrachelus, Neogobius fluviatilis, Neogobius melanostomus, Ponticola kessleri, Proterorhinus semilunaris) to many freshwater systems in Europe and is now widely distributed over four large European river basins (Danube, Rhine, Scheldt and Vistula). Within Europe, higher infection levels are documented in sites further from the native host range. In North America, however, G. proterorhini appears to be absent. Host specificity of G. proterorhini tested under natural conditions showed accidental host-switching onto local fish species (native Perca fluviatilis and non-native Perccottus glenii) in the river Vistula. Further examination of host-switching under experimental conditions, however, showed that G. proterorhini were unable to survive on non-gobiid hosts longer than 24 h. Our results indicate extremely low potential for host-switching of introduced G. proterorhini to non-gobiid hosts, at least in the freshwater systems of Central and Western Europe.
- Keywords
- Gobies, Gyrodactylidae, Introduction, Ponto-Caspian, Range expansion,
- MeSH
- Host Specificity physiology MeSH
- Trematode Infections epidemiology parasitology veterinary MeSH
- Perciformes parasitology MeSH
- Rivers parasitology MeSH
- Trematoda isolation & purification MeSH
- Geography MeSH
- Animals MeSH
- Check Tag
- Animals MeSH
- Publication type
- Journal Article MeSH
- Geographicals
- Europe epidemiology MeSH
- North America epidemiology MeSH
BACKGROUND: Introduced species can modify local host-parasite dynamics by amplifying parasite infection which can 'spill-back' to the native fauna, whether they are competent hosts for local parasites, or by acting as parasite sinks with 'dilution' of infection decreasing the parasite burden of native hosts. Recently infection by the trematode Bucephalus polymorphus has increased in several European rivers, being attributed to the introduction of intermediate host species from the Ponto-Caspian region. Using a combination of field and experimental data, we evaluated the competence of non-native and native fish as intermediate hosts for B. polymorphus and its role for parasite development in a definitive host. METHODS: The density of 0+ juvenile fish (the second intermediate hosts for B. polymorphus) was measured in the River Morava, Czech Republic and fish were screened for natural metacercariae infection. The stomach contents of predatory fish that are definitive hosts of B. polymorphus were examined to assess the importance of non-native gobies for parasite transmission. In semi-natural conditions, parasite establishment, initial survival, and maturity rates in experimentally infected definitive hosts pikeperch Sander lucioperca were measured in flukes recovered from native white bream Abramis bjoerkna and non-native tubenose goby Proterorhinus semilunaris and round goby Neogobius melanostomus. Adult fluke size and egg production was also measured to evaluate the potential effect of intermediate host species on parasite fitness. RESULTS: We detected high natural infection parameters of B. polymorphus in native cyprinids and non-native gobies compared to data from the period prior to goby establishment. Both fish groups are consumed by predatory fish and represent a major component of the littoral fish community. Parasite establishment and adult size in definitive hosts was equivalent among the second intermediate host species, despite a lower size of metacercariae recovered from round gobies. However, development in the definitive host of flukes recovered from gobies was reduced, showing higher mortality, delayed maturity and lower egg production, in comparison with parasites from native hosts. CONCLUSIONS: Substantial 'spill-back' of B. polymorphus due to higher transmission rates after establishment of non-native gobies was partially buffered by decreased fitness of B. polymorphus that underwent development in gobies.