Nejvíce citovaný článek - PubMed ID 23302800
Advanced melanoma is a relentless tumor with a high metastatic potential. The combat of melanoma by using the targeted therapy is impeded because several major driver mutations fuel its growth (predominantly BRAF and NRAS). Both these mutated oncogenes strongly activate the MAPK (MEK/ERK) pathway. Therefore, specific inhibitors of these oncoproteins or MAPK pathway components or their combination have been used for tumor eradication. After a good initial response, resistant cells develop almost universally and need the drug for further expansion. Multiple mechanisms, sometimes very distant from the MAPK pathway, are responsible for the development of resistance. Here, we review many of the mechanisms causing resistance and leading to the dismal final outcome of mutated BRAF and NRAS therapy. Very heterogeneous events lead to drug resistance. Due to this, each individual mechanism would be in fact needed to be determined for a personalized therapy to treat patients more efficiently and causally according to molecular findings. This procedure is practically impossible in the clinic. Other approaches are therefore needed, such as combined treatment with more drugs simultaneously from the beginning of the therapy. This could eradicate tumor cells more rapidly and greatly diminish the possibility of emerging mechanisms that allow the evolution of drug resistance.
- Klíčová slova
- BRAF, NRAS, drug resistance, melanoma, phenotype switching,
- Publikační typ
- časopisecké články MeSH
- přehledy MeSH
Patient-derived xenografts (PDXs) have emerged as an important platform to elucidate new treatments and biomarkers in oncology. PDX models are used to address clinically relevant questions, including the contribution of tumour heterogeneity to therapeutic responsiveness, the patterns of cancer evolutionary dynamics during tumour progression and under drug pressure, and the mechanisms of resistance to treatment. The ability of PDX models to predict clinical outcomes is being improved through mouse humanization strategies and the implementation of co-clinical trials, within which patients and PDXs reciprocally inform therapeutic decisions. This Opinion article discusses aspects of PDX modelling that are relevant to these questions and highlights the merits of shared PDX resources to advance cancer medicine from the perspective of EurOPDX, an international initiative devoted to PDX-based research.
- MeSH
- chemorezistence MeSH
- imunoterapie MeSH
- individualizovaná medicína * MeSH
- klinické zkoušky jako téma MeSH
- lidé MeSH
- metastázy nádorů MeSH
- modely nemocí na zvířatech MeSH
- myši MeSH
- nádorové biomarkery analýza MeSH
- nádorové kmenové buňky fyziologie MeSH
- nádory patologie terapie MeSH
- xenogenní modely - testy protinádorové aktivity * MeSH
- zvířata MeSH
- Check Tag
- lidé MeSH
- myši MeSH
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- přehledy MeSH
- Research Support, N.I.H., Extramural MeSH
- Názvy látek
- nádorové biomarkery MeSH
UNLABELLED: Recently, there has been an increasing interest in the development and characterization of patient-derived tumor xenograft (PDX) models for cancer research. PDX models mostly retain the principal histologic and genetic characteristics of their donor tumor and remain stable across passages. These models have been shown to be predictive of clinical outcomes and are being used for preclinical drug evaluation, biomarker identification, biologic studies, and personalized medicine strategies. This article summarizes the current state of the art in this field, including methodologic issues, available collections, practical applications, challenges and shortcomings, and future directions, and introduces a European consortium of PDX models. SIGNIFICANCE: PDX models are increasingly used in translational cancer research. These models are useful for drug screening, biomarker development, and the preclinical evaluation of personalized medicine strategies. This review provides a timely overview of the key characteristics of PDX models and a detailed discussion of future directions in the field.
- MeSH
- heterografty * MeSH
- individualizovaná medicína MeSH
- lidé MeSH
- modely nemocí na zvířatech * MeSH
- nádory patologie MeSH
- objevování léků MeSH
- preklinické hodnocení léčiv MeSH
- translační biomedicínský výzkum * metody MeSH
- xenogenní modely - testy protinádorové aktivity MeSH
- zvířata MeSH
- Check Tag
- lidé MeSH
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- přehledy MeSH